

Coherent Wigner Dynamics of a Superposition State in a Tunable Barrier Quantum Dot

Mauro Ballicchia, Mihail Nedjalkov, and Josef Weinbub

josef.weinbub@tuwien.ac.at

Institute for Microelectronics TU Wien, Austria www.iue.tuwien.ac.at

Electron Quantum Optics

Wave nature of electron \rightarrow Interferometers, electron sources etc.

Particle Wigner transport dynamics is a natural choice! Weinbub and Kosik, J. Phys. Condens. Matt. 34 (2022)

Wigner Modelling of Single-Electron Dynamics

Motivation

Coherent dynamics of interest!

Letter Published: 04 November 2019

Picosecond coherent electron motion in a silicon single-electron source

Gento Yamahata 🗠, Sungguen Ryu, Nathan Johnson, H.-S. Sim 🗠, Akira Fujiwara & Masaya Kataoka 🖂

Nature Nanotechnology 14, 1019–1023 (2019) Cite this article

3272 Accesses | 17 Citations | 48 Altmetric | Metrics

This talk: Wigner modeling: oscillation/exit Impact of timing on wave packet shape First step into single-electron sources

Yamahata et al., Nature Nanotechnology 14 (2019)

Stationary Schrödinger equation $H(r)\psi_n(r) = \epsilon_n\psi_n(r)$

Hamiltonian

$$H(r) = \frac{1}{2m} (-i\hbar \nabla_r)^2 + V(r)$$

Eigenvalues ϵ_1 ϵ_2 ϵ_3

•

Eigenfunctions $\psi_1(r)$ $\psi_2(r)$ $\psi_3(r)$:

Electron Quantum Superposition States

Set of Eigenfunctions represents electron state

$$\Psi(r,t) = \sum_{n} a_{n} \psi_{n}(r) e^{-\frac{i}{\hbar}\epsilon_{n}t}$$
$$\sum_{n} |a_{n}|^{2} = 1$$

IL

$$\Psi(r,t) = a_1 \psi_1(r) e^{-\frac{i}{\hbar}\epsilon_1 t} + a_2 \psi_2(r) e^{-\frac{i}{\hbar}\epsilon_2 t}$$

Yamahata et al., Nature Nanotechnology 14 (2019)

Density matrix

$$\rho(r,r',t) = \Psi(r,t)\Psi^{*}(r',t) = \left(a_{1}\psi_{1}(r)e^{-\frac{i}{\hbar}\epsilon_{1}t} + a_{2}\psi_{2}(r)e^{-\frac{i}{\hbar}\epsilon_{2}t}\right).$$
$$\left(a_{1}^{*}\psi_{1}^{*}(r)e^{\frac{i}{\hbar}\epsilon_{1}t} + a_{2}^{*}\psi_{2}^{*}(r)e^{\frac{i}{\hbar}\epsilon_{2}t}\right)$$

Time evolution probability density at given position based on stationary densities $n_1 = |\psi_1|^2$, $n_2 = |\psi_2|^2$ of the two Eigenstates $n(x,t) = \rho(x,x,t) = |a_1|^2 n_1(x) + |a_2|^2 n_2(x) + \Phi(x)cos(\phi(x) - \Delta_{\epsilon}t)$ x = r = r'

 $\Phi(\mathbf{x})\mathbf{e}^{\mathbf{i}\boldsymbol{\phi}(x)} = \mathbf{a}_1\boldsymbol{\psi}_1(x)\mathbf{a}_2^*\boldsymbol{\psi}_2^*(x)$

Probability density of electron quantum superposition state oscillates with a period $T = 2\pi/\Delta_{\epsilon}$ with $\Delta_{\epsilon} = (\epsilon_2 - \epsilon_1)/\hbar$

Wigner Dynamics

The Wigner Function $f_w(x, p, t)$ is unitarily equivalent to $\rho(r, r', t) = \Psi(r, t)\Psi^*(r', t)$ after center-of-mass transform

$$x=\frac{r+r'}{2} \qquad x'=r-r'$$

and Fourier transform

$$f_w(x,p,t) = \int \rho\left(x + \frac{x'}{2}, x - \frac{x'}{2}, t\right) e^{-i\frac{sp}{\hbar}} ds$$

The initial Wigner function $f_w(x, p, 0)$ at t = 0 can be obtained from $\rho(r, r', 0)$

Wigner Dynamics

Wigner dynamics $f_w(x, p, t)$ in a potential V(r) is obtained from the • Initial condition $f_w(x, p, 0)$ and

Wigner transport equation

$$\frac{\partial f_w(x,p,t)}{\partial t} + \frac{p}{m} \frac{\partial f_w(x,p,t)}{\partial x} = \int dp' V_w(x,p-p') f_w(x,p',t)$$
$$V_w(x,p) = \frac{1}{(2\pi\hbar)^3} \int \frac{ds}{i\hbar} e^{-\frac{i}{\hbar}s \cdot p} \left(V\left(x + \frac{s}{2}\right) - V\left(x - \frac{s}{2}\right) \right)$$

Solved by Wigner signed-particle Ensemble Monte Carlo

ViennaWD: https://www.iue.tuwien.ac.at/software/viennawd/

Schrödinger

$$n(x,t) = |a_1|^2 n_1(x) + |a_2|^2 n_2(x) + \Phi(x) cos(\phi(x) - \Delta_{\epsilon} t)$$

Wigner

$$\frac{\partial f_w(x,p,t)}{\partial t} + \frac{p}{m} \frac{\partial f_w(x,p,t)}{\partial x} = \int dp' V_w(x,p-p') f_w(x,p',t)$$

$$n(x,t) = \int f_w(x,p,t) \, dp$$

Simulation Setup: Potential Profiles

10

QD is localized by two potential barriers (Gaussians): Height 0.5eV and centered at 25 nm and 75 nm

Simulation Setup: Potential Profiles

The right barrier of the QD can be removed at a specific time instant t_1 (opening time)

Simulation Setup: Initial State

Coherent Oscillations in QD: Schrödinger vs Wigner

Coherent Evolution Outside of QD

Experiments consider different opening times t_1 :

- **CASE I** : $t_1 = 10$ fs
- **CASE II** : $t_1 = 400 \text{ fs}$

Coherent Evolution Outside of QD – Case I : $t_1 = 10$ fs

Right barrier opened right after start

Different opening times influence shape Leading to separation/superposition.

Highest peak before right barrier

Two peaks manifest:

- Different velocities
- Right peak is faster

Coherent Evolution Outside of QD – Case II : $t_1 = 400$ fs

After approximately ³/₄ of a period

Pronounced right peak

State is compressed before exit:

Exiting peaks are closer together

Probability Current

$$J(x) = \left(\frac{1}{m_{eff}}\right) \int pf_w(x,p) dp$$

Different opening times clearly result in different probability current

Peak separation (different velocities/energies) vs much stronger localization/magnitude

Summary

These are first steps

Particle Wigner approach ideal for studying electron dynamics

New tool to further optimize design and operation of single electron sources

Next steps

Determining ideal scenario and optimize: Is compressed even ideal?

Extended parameter study

Experimental verification

https://tinyurl.com/26j3uf5m

Free Webinar Series of TC-10

	Date: October 12, 2023	Date:
Т	Time: 16:00 PDT, 1:00 CEST, 08:00 JST	Time:
	Gerhard Klimeck, Purdue University	Tue G
	nanoHUB for Research and	Quant
	Education in Nanoelectronics	Nanoe

Pate: December 12, 2023 ime: 23:00 PDT, 8:00 CEST, 15:00 JST <u>ue Gunst, Synopsys</u> QuantumATK Applied to Ianoelectronics