
Modeling Self-Heating Effects in 28 nm 

Technology Node Fully-Depleted SOI Devices

Z. Wang, D. Vasileska, C.S. Soares*, G.I. Wirth*, M.A. Pavanello** and M. Povolotskyi***

Arizona State University, Tempe, AZ, USA

*UFRGS, Porto Alegre, Brazil

**Centro Universitario FEI, Sao Bernardo do Campo, Brazil

*** Jacobs, Hanover, MD, USA



Talk Outline

• Technology Trends

• Challenges to TCAD: Multiscale Nature of Self-Heating

• Approaches to Modeling Self-Heating

• ASU Approach in More Details

• Modeling Self-Heating: Thermal Conductivity

• 28 nm Technology Node FD SOI Device

• Importance of Self-Heating

• Conclusions



Technology Trends:



Effects:
• Random Dopant/Unintentional Dopant Fluctuations

• Self-Heating

• Quantization of Charge, Tunneling and Quantum Interference

Experimental Characterization:

• Heater-Sensor Approach [1]

• Gate Resistance Thermometry [2,3]

[1]  E. Bury, B. Kaczer, P. J. Roussel, R. Ritzenthaler, K. Raleva, D. Vasileska, G. Groeseneken, “Experimental validation of self-heating simulations and projections for transistors in 

deeply scaled nodes”, in Proceedings of IEEE, Reliability Physics Symposium, 2014 IEEE International, pp. XT. 8.1-XT. 8.6

[2] K. Triantopoulos et al., “Self-heating effect in FDSOI transistors down to cryogenic operation at 4.2K”, IEEE Trans. Electron Devices 66, no. 8, pp. 3498-3505 (2019).

[3]  M. Casse et al., “FDSOI for cryoCMOS electronics: device characterization towards compact model”, IEDM (2022)



Challenge to TCAD: 
Multiscale Nature of Self-Heating

• Phonon-mediated thermal transport is inherently multi-scale:

• The wave-length of phonons (considering phonons as waves) is typically at the nanometer scale;

• The typical size of a phonon wave energy packet is tens of nanometers, while 

• The phonon mean free path (MFP) can be as long as microns. 

• Multi-scale thermal transport [1]:

• Different heat transfer physics across different length scales, and 

• The physics crossing different scales is interdependent and coupled. 

[1] Phys.Chem.Chem.Phys., 2021, 23, 1785



Approaches to Modeling Self-Heating
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ASU Approach:
Energy Balance Model [1,2]
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[1] J. Lai and A. Majumdar, “Concurrent thermal and electrical modeling of submicrometer silicon devices”, J. Appl. Phys., Vol. 79, 7353 (1996). 

[2] K. Raleva, D. Vasileska, S. M. Goodnick and M. Nedjalkov,”Modeling Thermal Effects in Nanodevices”, IEEE Transactions on Electron 
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Approaches to Modeling Self-Heating, Cont’d
Heat Conduction Equation:

[1] N. J. Pilgrim, ”Electro-thermal Monte Carlo simulation of semiconductor devices”, PhD Dissertation, University of Leeds, UK, 2003.

[2]   E. Pop, R. W. Dutton, K. E. Goodson, “Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion”, J. Appl. Phys., 

Vol. 96, 4998 (2004).

[3]  J. Lai and A. Majumdar, “Concurrent thermal and electrical modeling of submicrometer silicon devices”, J. Appl. Phys. , Vol. 79, 7353 (1996).

[4]  Wachutka, G.K., “Rigorous Thermodynamic Treatment of Heat Generation in Semiconductor Device Modeling”, IEEE Trans., Computer-Aided Design Vol. 9, No. 11 

(1990): 1141-1149.



ASU Approach in More Details
Exchange of variables

in the electro-thermal solver

K. Raleva, D. Vasileska, S. M. Goodnick and M. Nedjalkov, 

”Modeling Thermal Effects in Nanodevices”, IEEE Transactions 

on Electron Devices, vol. 55, issue 6, pp. 1306-1316, June 2008.

Multi-Scale Electro-Thermal Solver

Mohamed, Mohamed, Katerina Raleva, Umberto Ravaioli, Dragica Vasileska, 

and Zlatan Aksamija. "Phonon Dissipation in Nanostructured Semiconductor 

Devices." IEEE Nanotechnology Magazine (2019): 1. Web. 

one-step forward

Electro-Thermal Solver



Modeling Self-Heating:
Thermal Conductivity

A measure of a material’s ability to transfer thermal energy by conduction.

Thermal conductivity k has two different contributions:  κ = κ phonon+ κ electron

• The electronic contribution to the thermal conductivity can be calculated using the Wiedemann-Franz law.

• The phonon contribution depends upon:

o Scattering by Lattice Imperfections

o Defects, dislocations, boundaries

(ELASTIC, energy and momentum are conserved)

o Phonon-Electron Scattering

o Phonon-Phonon Interactions

• NORMAL  N – processes → Energy and momentum are conserved

• UMKLAPP  U-processes  → Only energy is conserved

Phonon-Boundary Scattering (thin films)
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        experimental data

full lines: BTE predictions

dashed lines: empirical model

thin lines: Sondheimer
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D. Vasileska, K. Raleva and S. M. Goodnick, “Electrothermal Studies of FD SOI 

Devices That Utilize a New Theoretical Model for the Temperature and Thickness 

Dependence of the Thermal Conductivity”, IEEE Transactions on Electron Devices, 

Vol. 57, pp. 726 – 728 (2010).

Experimental Data:
M. Asheghi,., M. N. Touzelbaev., K. E. Goodson, Y. 

K. Leung, and S. S. Wong., ASME Journal of Heat 

Transfer, Vol.120, pp. 30-33, 1998. 



28 nm Technology Node FD SOI Device

[1]  M. Casse et al., “FDSOI for cryoCMOS electronics: 

device characterization towards compact model”, IEDM 

(2022)

Simulated transfer characteristics compared with 

available experimental data from Ref. [1] at 

T=300K. The applied drain voltage is Vds=0.9V.

Simulated transfer characteristics at 78K, 150K 

and 300K. The applied drain voltage is 

Vds=0.9V.

Quantum Features:

• Superposition of states  ➔ Phase coherence  ➔ Low-temperature ➔ No scattering

• Entanglement

• Quantum Tunneling



Importance of Self-Heating

Lattice Temperature Profile 

▪ Lattice temperature profile at ambient temperature T=300K for 

Vgs=0.6V and Vds=0.9V. 

▪ We used the following boundary conditions in the simulation:

o Fixed temperature T=300K at source and drain contacts,

o Zero heat flux at the gate contact.

Comparison of simulated (solid lines) and experimental (open 

circles) temperature under the gate for various input powers at 

T=78K, 150K and 300K. 



Conclusions

• A 2D/3D electro-thermal device simulator has been developed at ASU to 
study self-heating effects in:

• FD SOI Devices, nanowire transistors, dual gate device structures, FinFETs, CMOS 
inverters and simple two transistor (CS and CD) circuits.

• Low temperature simulations of FD SOI devices confirm the experimental 
findings that self-heating is very important at cryogenic temperatures.
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