

**Unleash Innovation** 

## Where is semiconductor technology heading? A view from industry and implications on computational nanotechnology research.

**Carlos H. Diaz** 

#### **TSMC R&D**



#### Energy efficiency key for sustainable growth





TSMC Property



**Unleash Innovation** 

#### System Integration Capabilities – TSMC 3DFabric<sup>™</sup>





#### **3D Interconnect Scaling for Higher Bandwidth**



Douglas Yu, ISSCC 2021

## **3DIC modeling challenge & opportunities**

- Discovering and developing fundamental insights with short TAT on materials & processes enabling sustainable cost-effective system integration growth in density, energy efficiency, performance, and reliability. -→ continuously pushing beyond SOTA
- Heat spreading and heat transfer
  - Film stacks materials including their synthesis and interfaces
- Heat removal from nanostructures by conduction and/or convection
  - Exploration of materials and fluids, structures, interfaces, ...
- Stress failure prediction and correlations to failure modes
  - Chip level, 3DIC level, and package-level
- Materials and processes for silicon photonics waveguides, high-efficiency couplers, e-lenses, ...





## **Transistors – Power supply scaling**

- Breakthroughs needed to support decreasing gate-drive headroom
- New transistor structures, channel materials, and contact materials





#### **Transistor structural and integration trends**



© 2023 TSMC, Ltd

TSMC Property



#### **Transistor Materials and Structural Trends**





Mark Liu, ISSCC 2021



# Monolithic integration:

## modeling challenges & opportunities

- Predictive modeling for materials deposition or growth and etching processes to form high aspect ratio structures (devices or interconnect elements) with features in and/or out of line-of-sight
- Ditto for area (material)-selective deposition and etching including surface functionalization chemicals and processes
- Accurate / predictive and fast TAT modeling in FEOL and BEOL
  - structural mechanical integrity through out the processes
  - self-heating and heat dissipation though the film stack from cell-level to die-level
- Stress failure prediction and correlations to failure modes

#### A modeling case example for precursor absorption: new insights on Si Growth





1000 Growth Rate [nm/min] 100 10 - Exp. **Si<sub>2</sub>H<sub>6</sub>:H**<sub>2</sub><sup>1</sup> 0.1 – 🗛 – Exp. Si<sub>2</sub>H<sub>6</sub><sup>2</sup> 0.01 - This work Si<sub>2</sub>H<sub>6</sub>:H<sub>2</sub>:SiH<sub>2</sub>  $\Theta$  – This work Si<sub>2</sub>H<sub>6</sub>:H<sub>2</sub> 1.0 1.1 1.2 1.3 1.4 1.5 0.7 0.8 0.9 1000/T [1/K]

<sup>1</sup> J. M. Hartmann, et al., *Thin Solid Films*, 2012, *520*, 3185

- <sup>2</sup> D. S. Byeon, et al., *Coating*, 2021, *11*, 568
- <sup>3</sup> K. Yoshida, et al., *J. Phys. Chem. A*, 2006, *110*, 4726

| Reactions                                   | Index | Activation<br>energy<br>or Feasibility <sup>3</sup> |
|---------------------------------------------|-------|-----------------------------------------------------|
| $Si_2H_6 \rightarrow SiH_4 + SiH_2$         | R1    | ~ 2 eV                                              |
| $Si_2H_6 \rightarrow H_2 + H_3SiSiH$        | R2    | ~ 2 eV                                              |
| $SiH_2 + SiH_4 \rightarrow H_3SiSiH + H_2$  | R3    | Feasible at 740 K                                   |
| $SiH_2 + Si_2H_6 \rightarrow Si_3H_8$       | R4    | Feasible at 740 K                                   |
| $Si_2H_6 + H_3SiSiH \rightarrow Si_4H_{10}$ | R5    | Feasible at 740 K                                   |
| $SiH_2 + Si_3H_8 \rightarrow Si_4H_{10}$    | R6    | Feasible at 740 K                                   |
| Ref. L. Li et al., IEDM 202                 | 2     |                                                     |

## Beyond silicon-based channel: low-dimensional materials





## 2D TMDs (MX<sub>2</sub>) - channel and gate-dielectric materials

- M: a transition metal (W, Mo, ...) and X: a chalcogen element (S, Se, Te)
- Wafer-level transfer-free high-quality channel material synthesis challenging
- Low-resistance contacts also challenging



TSMC Property



## 2D Channel materials: Graphene nanoribbons

• Progress being made on nanoribbons with defect-free edges



## **1D channel materials: Carbon Nanotubes**



Unleash Innovation

Synthesis of oriented semiconducting CNTs is progressing



J. Wang et al., Nature Catalysis, 2018

© 2023 TSMC, Ltd



#### Gate dielectrics for low dimensional materials



G. Pitner et al., IEDM, 2020

© 2023 TSMC, Ltd



#### **Contacts for low-dimensional channel materials**

Challenges: Over 20X R<sub>c</sub> reduction, thermal stability > 400C, CMOS compatibility •



## **Transistors: modeling challenges and opportunities**



#### • Logic transistors

- Comprehensive and predictive fundamental transport models that can realistically project on and off-state capabilities of devices having low-dimensional (2D or 1D) channels
  - <sup>D</sup> TMDs, arm-chair graphene nanoribbons, CNTs
- Ditto for thermally and mechanically stable low-resistance contacts to low-D channels
- Accurate carrier scattering in scaled devices still opportunities @ fundamental level
- Synthesis and processing of non-silicon based channel materials of device-quality
- Transistors for analog, mixed-signal, and other applications
  - Modeling of BEOL-compatible transistors from materials & processes to transistor-level
    - e.g. GaN n & p-type transistors for CMOS, light sources and detectors for silicon photonics, ...
  - Novel concepts with platform-relevant functionalities



#### New memory devices and key metrics

 Promising memory devices need to be uncompromising in all critical metrics compared to state of the art scaled solutions





## Spin-Transfer-Torque (STT) MRAM

- Benefits: Density compared to embedded SRAM or embedded Flash
- Challenges: Lower power & same speed / SRAM, magnetic immunity, thermal stability •



## **Spin-Orbit-Torque MRAM potential**

- Low power, high speed, higher R/W margin, and higher endurance versus STT-MRAM
- Challenge: attain benefits with cell-size significantly better than 6T-SRAM
- Type-Y cells remain most promising albeit density benefits lesser versus X or Z



$$P = RI_{c0}^{2} = \frac{\rho}{wt} \cdot I_{c0}^{2} = \rho \cdot t \cdot J_{c0}^{2}$$

| Type-Y (1, 3, 4)                                | Type-X <sup>(3)</sup>     | Type-Z <sup>(2, 5)</sup>    |
|-------------------------------------------------|---------------------------|-----------------------------|
| FL<br>Je HM                                     | Hz                        |                             |
| Field-free                                      | Not field-free            | Not field-free              |
|                                                 |                           |                             |
| <i>J<sub>c</sub></i> ~10 MA/cm <sup>2 (3)</sup> | ~40 MA/cm <sup>2(3)</sup> | ~100~300 MA/cm <sup>2</sup> |



**Unleash Innovation** 



#### **SOT-MRAM**

- Write path material & interface yielding high injected spin currents into FL are key to low power
- Free-layer and write-channel co-design key to low switching current & magnetic immunity





## **Ferroelectric Memory – 1/2**

- Ferroelectric memories primary benefits include density, low power, and speed.
- Challenges: endurance, retention, leakage and voltage scalability





## **Ferroelectric RAM (MFM) – 1/2**



 Electrode materials and interface layers along with ferroelectric film quality are all critical to ferroelectric device endurance – innovation opportunities





#### **Cross-bar memory arrays**

- Cross-bar arrays have benefits in memory cell area and array-efficiency
- Selector devices with sub nA leakage, on-state current ~1mA, and high speed are key
- Challenges: voltage scalability, thermal stability, variability, drift, endurance, ESH friendly material solutions



## Memories: modeling challenges & opportunities

- Accurate and fast TAT "tail-bit" and device-to-device variation prediction
  - Enabling design-space exploration including process variability effects
  - Enabling DTCO in terms of PPA, bit error rates, retention, endurance, …
- Endurance and cycle-to-cycle variation prediction using reliability physics
  - TDDB at MgO layer in an MTJ
  - Fatigue, imprint and SILC effects in an Fe-FET
- Screening of new materials using ab-initio level models:
  - High spin polarization generation and transport in an MTJ
  - High quality interfaces for gate stack in an Fe-FET

#### Interconnect resistance challenge



Need materials enabling > 2X line & via resistance reduction / Cu



**Unleash Innovation** 

#### **Interconnect Materials Research**



- Liner and barrier scaling are largely of incremental benefits
- Materials exploration beyond elemental options remains important





## Interconnect: modeling challenges & opportunities

- Predictive and accurate screening of materials for on-chip electrical interconnect
  - Interconnect disruptive in terms of
    - low-resistance and electro-migration capabilities down to sub 10nm physical dimensions
    - via, via-to-line, and line resistances are pervasive critical performance challenges to address
  - Dielectrics disruptive in terms of low-capacitance / effective lower dielectric constants
- Predictive and accurate screening of ensuing interconnect stack in terms of mechanical integrity under mechanical and/or thermal stress – failure mechanisms and failure modes, heat transport.



## Building a Functional Virtual Fab from fundamental material properties to system level

• Atomistic simulations: building blocks in predictive TCAD simulations and virtual fab concept



TSMC Property



## **Concluding remarks**

- Systems with higher levels of performance, functionality, and density continue to require significant energy-efficiency innovations in logic and 3DIC technologies.
- Predictive, accurate and fast TAT modeling from materials to corresponding device-level or interconnect fabric-level remains critical to efficient technology exploration and development.
- Physical representation completeness and self-consistency remain absolute musts to confidently project the expected benefits and/or tradeoffs of novel device, interconnect, and 3DIC concepts relative SOTA capabilities thus contributing to effective screening of exploratory technology options