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Where is semiconductor technology heading? 

A view from industry and implications on 

computational nanotechnology research.
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Energy efficiency key for sustainable growth

SRC-SIA Decadal Plan for Semiconductors
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System Integration Capabilities – TSMC 3DFabricTM
P

e
rf

o
rm

a
n

c
e

o
r

P
e
rf

o
rm

a
n

c
e
 /

 W
a
tt

Compute intensity

Increasing

bandwidth



42023/5/25TSMC, Ltd©

Unleash Innovation

3D Interconnect Scaling for Higher Bandwidth

Douglas Yu, ISSCC 2021
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• Discovering and developing fundamental insights with short TAT on materials & processes 

enabling sustainable cost-effective system integration growth in density, energy efficiency, 

performance, and reliability. - continuously pushing beyond SOTA

• Heat spreading and heat transfer 

▪ Film stacks – materials including their synthesis and interfaces 

• Heat removal from nanostructures by conduction and/or convection

▪ Exploration of materials and fluids, structures, interfaces, … 

• Stress failure prediction and correlations to failure modes

▪ Chip level, 3DIC level, and package-level

• Materials and processes for silicon photonics - waveguides, high-efficiency couplers, e-lenses, …
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Transistors – Power supply scaling

• Breakthroughs needed to support decreasing gate-drive headroom

• New transistor structures, channel materials, and contact materials
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Transistor structural and integration trends

Stacked FETs

SOURCE: IMEC
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Transistor Materials and Structural Trends

Mark Liu, ISSCC 2021
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modeling challenges & opportunities

• Predictive modeling for materials deposition or growth and etching processes to 

form high aspect ratio structures (devices or interconnect elements) with features 

in and/or out of line-of-sight

• Ditto for area (material)-selective deposition and etching – including surface 

functionalization chemicals and processes

• Accurate / predictive and fast TAT modeling in FEOL and BEOL

▪ structural mechanical integrity through out the processes 

▪ self-heating and heat dissipation though the film stack from cell-level to die-level

• Stress failure prediction and correlations to failure modes
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2D TMDs (MX2) - channel and gate-dielectric materials

• M: a transition metal (W, Mo, …) and X: a chalcogen element (S, Se, Te)

• Wafer-level transfer-free high-quality channel material synthesis challenging

• Low-resistance contacts also challenging

Wafer-scale 

growth and transfer

Single crystal 

monolayer h-BN as]

IL gate-dielectric layer

T. -A. Chen et al., Nature, 2020
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2D Channel materials: Graphene nanoribbons

• Progress being made on nanoribbons with defect-free edges

Cai, J., et. al., Nature 2010 

200C

400C

Chen, Y-C., et al., ACS Nano, 2013

Molecular synthesis of heterostructuresBottom-up molecular Synthesis

J. Yin et al., J. Am. Chem. Soc. 2022, 144, 16012−16019
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1D channel materials: Carbon Nanotubes

• Synthesis of oriented semiconducting CNTs is progressing

J. Wang et al., Nature Catalysis, 2018
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Gate dielectrics for low dimensional materials
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G. Pitner et al., IEDM, 2020



162023/5/25TSMC, Ltd©

Unleash Innovation

Contacts for low-dimensional channel materials

• Challenges: Over 20X RC reduction, thermal stability > 400C, CMOS compatibility

[1] Tang et al., VLSI Tech. Symp., 2017

[2] Pitner et al., Nano Letter, 2019

p-CNT

[10]

n-CNT [8]

[11]

[9]

2
R

C
–

R
Q

 (
k
W

)

A.-S. Chou et al., VLSI 2020

CNT

[3] Cao et al., Science, 2015

[4] A. Franklin, Nat. Nano, 2010
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• Logic transistors

▪ Comprehensive and predictive fundamental transport models that can realistically project on 

and off-state capabilities of devices having low-dimensional (2D or 1D) channels

▫ TMDs, arm-chair graphene nanoribbons, CNTs

▪ Ditto for thermally and mechanically stable low-resistance contacts to low-D channels

▪ Accurate carrier scattering  in scaled devices - still opportunities @ fundamental level

▪ Synthesis and processing of non-silicon based channel materials of device-quality

• Transistors for analog, mixed-signal, and other applications

▪ Modeling of BEOL-compatible transistors – from materials & processes to transistor-level

▫ e.g. GaN n & p-type transistors for CMOS, light sources and detectors for silicon photonics, …

▪ Novel concepts with platform-relevant functionalities
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New memory devices and key metrics 

• Promising memory devices need to be uncompromising in all critical metrics 

compared to state of the art scaled solutions
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Spin-Transfer-Torque (STT) MRAM

• Benefits: Density compared to embedded SRAM or embedded Flash

• Challenges: Lower power & same speed / SRAM, magnetic immunity, thermal stability
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• Low power, high speed, higher R/W margin, and higher endurance versus STT-MRAM

• Challenge: attain benefits with cell-size significantly better than 6T-SRAM

• Type-Y cells remain most promising albeit density benefits lesser versus X or Z
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SOT-MRAM

• Write path material & interface yielding high injected spin currents into FL are key to low power

• Free-layer and write-channel co-design key to low switching current & magnetic immunity 
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• Ferroelectric memories primary benefits include density, low power, and speed.

• Challenges: endurance, retention, leakage and voltage scalability

• Possibilities: MLC capability
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• Electrode materials and interface layers along with ferroelectric film quality are all 

critical to ferroelectric device endurance – innovation opportunities

P. J. Liao et al., VLSI, 2020
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Cross-bar memory arrays

• Cross-bar arrays have benefits in memory cell area and array-efficiency

• Selector devices with sub nA leakage, on-state current ~1mA, and high speed are key

• Challenges: voltage scalability, thermal stability, variability, drift, endurance, ESH friendly material solutions

Y. S. Chen et al., VLSI, 2021
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• Accurate and fast TAT “tail-bit” and device-to-device variation prediction

▪ Enabling design-space exploration including process variability effects 

▪ Enabling DTCO in terms of PPA, bit error rates, retention, endurance, …

• Endurance and cycle-to-cycle variation prediction using reliability physics

▪ TDDB at MgO layer in an MTJ

▪ Fatigue, imprint and SILC effects in an Fe-FET

• Screening of new materials using ab-initio level models:

▪ High spin polarization generation and transport in an MTJ

▪ High quality interfaces for gate stack in an Fe-FET
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• New thinner metal barrier materials continue to key for low-R vias and lines

• Need materials enabling > 2X line & via resistance reduction / Cu 
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• Liner and barrier scaling are largely of incremental benefits 

• Materials exploration beyond elemental options remains important

K. Sankaran et al., IEEE IITC 2018
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Interconnect: modeling challenges & opportunities

• Predictive and accurate screening of materials for on-chip electrical interconnect

▪ Interconnect disruptive in terms of

▫ low-resistance and electro-migration capabilities down to sub 10nm physical dimensions

▫ via, via-to-line, and line resistances are pervasive critical performance challenges to address 

▪ Dielectrics disruptive in terms of low-capacitance / effective lower dielectric constants

• Predictive and accurate screening of ensuing interconnect stack in terms of 

mechanical integrity under mechanical and/or thermal stress – failure 

mechanisms and failure modes, heat transport.
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from fundamental material properties to system level

• Atomistic simulations: building blocks in predictive TCAD simulations and virtual fab concept
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Concluding remarks

• Systems with higher levels of performance, functionality, and density continue to 

require significant energy-efficiency innovations in logic and 3DIC technologies.

• Predictive, accurate and fast TAT modeling from materials to corresponding 

device-level or interconnect fabric-level remains critical to efficient technology 

exploration and development.

• Physical representation completeness and self-consistency remain absolute 

musts to confidently project the expected benefits and/or tradeoffs of novel 

device, interconnect, and 3DIC concepts relative SOTA capabilities thus 

contributing to effective screening of exploratory technology options 


