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Why ULTRA materials for power electronics: Large
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Full Band Cellular Monte Carlo
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particle dynamics

Ensemble Monte Carlo (EMC)

v computationally slow
v low memory requirements

VS.
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Electronic Structure

* Density Functional Theory (DFT) in Quantum
Espresso (QE) 1s used to calculate the electronic band
structure based on the ground-state charge density,
computed using pseudopotential inputs.

* BerkeleyGW uses the DFT result from QE as a
starting point, and calculates excited states (i.e.
conduction band energies) more accurately using
Green’s functions.

* DFT typically under-estimates band-gaps, while GW
produces more accurate estimations.

* GW band-gap estimations get more accurate with self-
consistent iterative solutions.

* The DFT conduction bands on the right have been shifted
upward to match the GW band-gap.
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Diamond Electronic Structure
Q.E. DFT vs. BerkeleyGW




Phonon Dispersion %

. Phonpn frequqncies are computed using honon Dispersions, Diamond, OE-DFPT
Density Functional Perturbation Theory e 740 Bohr NN
(DFPT) in Quantum Espresso 1400 1400 -

* The choice of pseudopotential (PP) input 1200
file has a large effect on the resulting
dispersion with the commonly used lattice _ 000
constant in diamond
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Phonon Dispersion With and Without

Boron Doping (Guzman et al.)
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* A relaxed lattice constant (Pavone et al.)
converges phonon dispersions from
different PP’s together in diamond
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Impact Ionization Scattering Rate

Two approaches to calculating impact 1onization transition rate:
1. Screened Coulomb interaction — 2 particles, internal
2. Self-energy from GW (Schilfgaarde et al., Usaka et al.)

Impact ionization rate from screened Coulomb interaction:
1 2m V3
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state k1, and cool carrier initial and final
states k, and k,,.

Delta function constraints across energy
and momentum eliminate one of the
three integrals.

Exchange matrix element Mg is found by
switching states 1’ and 2’.

Sum across all four states’ reciprocal
lattice vectors requires full knowledge of
the band structure and wave-functions.
(only valid for plane wave expansion)




Full-Band Lindhard Dielectric Function

* Full-band and energy-transfer dependence are needed for the
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dielectric function. Lindhard Dielectric Function &(w, g) for Diamond
« Static approximation (w = 0) ceases to be valid when energy 20
transfers on the order of 5-10 eV are taking place to ionize cool B
carriers across ultra-wide bandgaps. s 0
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GW-Derived Impact Ionization Scattering Rat JES }

* The CMC code was modified to 1mport
BerkeleyGW calculated eigenvalues and
wavefunctions

D

* Using the GW electronic structure as input, the ;
anisotropic 1mpact 1onization rate 1s calculated

directly from GW.

* Also possible to directly calculate the impact
lonization rate from the self-energy in GW (van

Schilfgaarde Physical Review B §1, 125201 (2010))
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Deformation Potential Scattering

Electron-Phonon Scattering Rates Computed

The deformation potential scattering rate from point k in band v to a region From Constant Deformation Potentials
Q— centered around the point k" in band v’ for phonon mode 7 is calculated | BLYP+HGH
’f . ‘ Pseudopotential
using Fermi’s Golden Rule: 1o Input
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Impact lonization Coetficients

Scattering Rate 1/t (s1)

Electron-Phonon Scattering Rates Computed
From Constant Deformation Potentials
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Full-Band Monte Carlo

simulations with varying E-field
strength along the [100] direction
Impact ionization coefficients are
calculated for each E-field using

Nv;(E) dt
The results are fitted to

Chynoweth’s law: y
B

a;(E) =

Tonization Coefficients vs Electric Field
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Large differences between the deformation potentials
leads to large discrepancies between ionization
coefficient results.
This motivated us to study EPW (Electron-Phonon
with Wannier) and first-principles calculations of

deformation potentials.




Ab Initio Electron-Phonon Interactions

FSU
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ITonization Coefficients in Diamond

* The deformation scattering transition rates

FSU

Ionization Coefficients vs Electric Field

obtained from EPW are used with the ab initio
impact 1onization transition rates 1n bulk
diamond full-band Cellular Monte Carlo
simulations with varying electric field strengths
to obtain the field-dependent 1onization rates.

As observed on the right, importing the ab initio
deformation potentials from EPW increases the
measured 1onization rate for both electrons and
holes.

Ionization rates obtained from DFT electronic
structure are significantly different from the GW
rates, demonstrating that finer band structure
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Conclusion

» Simulated 1onization coefficients are highly dependent on the choice of deformation
potential mputs.

* Deformation potentials from ab initio methods (EPW) increase the resulting
ionization coefficients.

* The choices of electronic and phonon band structure inputs are also important.

* This methodology will be extended to other UWBG materials, including cubic BN
and AIN alloys (AlGaN, BAIN).




Velocity Field

Carrier Velocity (cm/s)

1071

106

Velocity-Field Curves, GW+EPW

mfim Electrons, GW+EPW s
== Holes, GW+EPW
7+ Electrons, Nava etal. | |
* Holes, Reggiani et al. |

) =

,,,,,,,,,,,,,,,,,,,,,,,,

........................

_________________________________

...............

__________

103 164 10°
E-Field (MV/cm)



	Diapositiva 1: Influence of Deformation Potential Scattering on Impact Ionization in Ultra-Wide Bandgap Materials
	Diapositiva 2: ULTRA Semiconductors
	Diapositiva 3: Ultra Materials for a Resilient, Smart Electricity Grid (ULTRA) Energy Frontier Research Center Director: Robert Nemanich, Deputy Director: Steve Goodnick,  Research Collaborations Director: Srabanti Chowdhury
	Diapositiva 4
	Diapositiva 5: Electronic Structure
	Diapositiva 6: Phonon Dispersion
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9: GW-Derived Impact Ionization Scattering Rates
	Diapositiva 10: Deformation Potential Scattering
	Diapositiva 11: Impact Ionization Coefficients
	Diapositiva 12: Ab Initio Electron-Phonon Interactions
	Diapositiva 13: Ionization Coefficients in Diamond
	Diapositiva 14: Conclusion
	Diapositiva 15: Velocity Field 

