

Efficient ab initio electronic transport methods

Zhen Li¹, Graziosi Patrizio², Neophytos Neophytou¹

¹School of Engineering, University of Warwick, Coventry, UK ²Institute for the Study of Nanostructured Materials, CNR Bologna, Italy

Wednesday, 14 June, 2023

Zhen.li.2@warwick.ac.uk

Basics of thermoelectricity

Material complexity examples

Complex bands and energy surfaces

Complex phonon spectrum and scattering

Need ab initio treatment of transport !!

I. Low field transport methods from ab initio Constant relaxation time approximation (CRT)

Electron Phonon Wannier (EPW) Deformation potential

- **II. Deformation potential beyond ADP** Non-polar materials: Case of Si Polar materials complexities: case for Mg₃Sb₂
- **III. Efficiency**

I. Low field transport methods from ab initio Constant relaxation time approximation (CRT) Electron Phonon Wannier (EPW) Deformation potential

II. Deformation potential beyond ADP Non-polar materials: Case of Si Polar materials complexities: case for Mg₃Sb₂

III. Efficiency

Electronic transport: DFT + BTE

BTE (Boltzmann Transport Equation)

$$\sigma = q_0^2 \int_E \Xi(E) \left(-\frac{\partial f_0}{\partial E} \right) dE$$

Transport distribution function

$$\Xi(E) = \sum_{k,n} v_{k,n,E}^2 \tau_{k,n,E} DOS_{k,n,E}$$

$$\tau(k, E, n, T, ph., imp., alloy, ...)$$

Relaxation time?

 $\tau_{k,n,E}$

Existing Codes

Relaxation time $\tau_{k,n,E}$

Speed

Constant Relaxation Time (CRT) approximation

Avoids all tau complexity

Typically tau=15 fs for all materials and T

Most commonly used

Efficiency & Accuracy ?

- **Deformation potential methods** AMSET, EPIC STAR
- (one, 'global' acoustic deformation potential)

Accuracy

Our code: ElecTra

DFPT + Wannier

ElecTra – Electronic Transport

Necessity beyond CRT

- I. Low field transport methods from ab initio Constant relaxation time approximation (CRT) Electron Phonon Wannier (EPW) Deformation potential
- **II. Deformation potential beyond ADP** Non-polar materials: Case of Si Polar materials complexities: case for Mg₃Sb₂

III. Efficiency

Beyond acoustic deformation potential

➤ Acoustic deformation potential: $D_{ADP} = \frac{M_{mn}^{\nu}(\mathbf{k}, \mathbf{q})}{|\mathbf{q}|}$ Acoustic phonons: Perturbing potential $V_{e-ph} = D_{ADP} \nabla \cdot \boldsymbol{u}$

> Optical deformation potential: $D_{ODP} = M_{mn}^{\nu}(\mathbf{k}, \mathbf{q})$ <u>Optical phonons</u>: Perturbing potential: $V_{e-ph} = D_{ODP}u$

> Intervalley deformation potential: $D_{\text{IVS}} = M_{mn}^{\nu}(\mathbf{k}, \mathbf{q})$

 $M_{mn}^{\nu}(\mathbf{k},\mathbf{q}) = \langle \psi_{m\mathbf{k}+\mathbf{q}}(\mathbf{r}) | \delta_{\nu \mathbf{q}} V(\mathbf{r}) | \psi_{n\mathbf{k}}(\mathbf{r}) \rangle$

DFT calculations:

DFPT calculations:

band structure, wavefunctions

dynamical matrix, phonon perturbation

Z. Li, et al., Phys. Rev. B, 2021, 104, 195201

The case of Si

Deformation potential extraction

$$g_{mn}^{\nu}(\mathbf{k},\mathbf{q}) = \sqrt{\frac{\hbar}{2m_0\omega_{\nu\mathbf{q}}}} M_{mn}^{\nu}(\mathbf{k},\mathbf{q}) \implies g_{mn}^{\nu}(\mathbf{k},\mathbf{q}) = \sqrt{\frac{\hbar}{2m_0\omega_{\nu,\mathbf{q}}}} < m, \mathbf{k} + \mathbf{q} \left| \delta V_{\nu,\mathbf{q}} \right| n, \mathbf{k} >$$
¹²⁰

Density Functional Theory (DFT) calculations:

band structure, electronic wavefunctions

using the Quantum ESPRESSO package

Density Functional Perturbation Theory (DFPT) calculations:

dynamical matrix, phonon perturbation

using the Quantum ESPRESSO package

Wannier Interpolation (if needed):

e-ph coupling matrix, electron and phonon eigenvalues

using the Electron-phonon Wannier package (EPW)

b initio

Good agreement between our method and DFPT+Wannier / exp.

[1] Z. Li, et al., Phys. Rev. B, 2021, 104, 195201

[2] J. Ma, et al., Phys. Rev. B 97, 045201 (2018)

[3] J. C. Irvin, Bell Syst. Tech. J. 41, 387 (1962).

[4] F. Mousty, et al., J. Appl. Phys. 45, 4576 (1974)

[5] W. R. Thurber, No. 64. US Department of Commerce, National Bureau of Standards (1981)

[6] G. Masetti, et al., IEEE Trans. Electron Devices 30, 764 (1983)

[7] C. Jacoboni, et al., Solid State Electron. 20, 77 (1977)

Polar material: the case of Mg₃Sb₂

Polar material

Various scattering channels at room temperature

II. Deformation potential beyond ADP

> major scattering channel at room temperature: Fröhlich interaction

(1) Subtract this long range (dipole) part from the total

Transport properties for Mg₃Sb₂

II. Deformation potential beyond ADP

- I. Low field transport methods from ab initio Constant relaxation time approximation (CRT) Electron Phonon Wannier (EPW) Deformation potential
- **II. Deformation potential beyond ADP** Non-polar materials: Case of Si Polar materials complexities: case for Mg₃Sb₂

III. Efficiency

Efficiency

High performance computing clusters: 1 node = 16 CPUs

EPW

Meshes:

- ✓ DFT wavefunctions/ DFPT calc.
- ✓ 12×12×12 k-mesh, 6×6×6 q-mesh
- \checkmark Interpolate k-mesh with Wannier

Transport- EPW (main cost):

- Several millions of matrix elements
- ✓ compute transport

Cost: 64×64×64: < 20 hr on 16 nodes

this method

Meshes:

- ✓ DFT wavefunctions/ DFPT calc.
- ✓ gives the 'original' k-mesh, q-meshe
- ✓ DFT bands or Wannier interp. bands
 ✓ (if DFT-a few hundred CPU hrs)

Transport:

- ✓ A few matrix elements (100s)
 ✓ DFPT (50 hrs on 1 node, 30min/element)
- ✓ <u>or</u> EPW (2hrs on 1 node)
 ✓ Deformation pot. (minimal time)
 Transport cost: < 24 hrs on 1 node

✓ (400 CPU hrs)

Complexity for Mg₃Sb₂

DFT calculations for Mg₃Sb₂: 20× the time of Si

Too difficult for fully ab initio calculations of transport for Mg₃Sb₂

Novel formalism for electronic transport in complex materials

1) Newly developed numerical simulator for BTE in complex TE materials: Allows the incorporation of e-ph, ionized impurity, and alloy scattering, etc.;

> *ElecTra*: 10.5281/zenodo.5074944 P. Graziosi, et al., *ACS Appl. Energy Mater.*, **2020**, 3, 5913-5926 Z. Li, et al., *Crystals*, **2022**, 12, 11, 1591 (invited) P. Graziosi, el. al., *Comput. Phys. Commun.*, **2023**, 108670

2) First-principles framework to extract el-ph. scattering rates:

Extract acoustic, optical, and intervalley deformation potentials for use in BTE;

Z. Li, et al., Phys. Rev. B, 2021, 104, 195201

Truly enabling, <u>accurate</u>, and <u>computationally efficient</u> method: Middle ground between the CRT and fully first-principles Wannier-type methods.

Acknowledgements

Dr. Patrizio Graziosi

patrizio.graziosi @cnr.it

Prof. Neophytos Neophytou

N.Neophytou @warwick.ac.uk

NANOthermMA COMPLEXthermMA

