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Motivation
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Single-particle Formulation

° Boltzmann equation for electrons in a bulk semiconductor

<§t + %E . Vk])f(k],l‘) = (Qone + Qee)[f](kl’t)

° Single-particle scattering operator (interactions with phonons, impurities, alloy disorder)
Quns 1(k1,1) = [ 150k K1) (K1.1) = S ). 0)

° Two-particle scattering operator

Ocel F1(k1, 1) /// Soo (k1. Jea| K ) [} 1) £ 1) — £ (ky. ) (ks )] ey ) R,




Two-particle Formulation

° Two-particle kinetic equation

0
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° Two-particle scattering operator is linear in the two-particle distribution function
Oas )1 ) = [ [ Saallr el K10 [k 3, 1) = el )] e 0k
° Augmentation of the single-particle scattering rate
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Stationary Two-particle MC Method

° Total scattering rate
[(ky,k2) = Tone(k1) + Tone (k) + 2 Tee(ky — ki)

o Electron-electron scattering rate is constant during a free flight

ne*m K|
Dee(ky — k1) = a2 B K+ B K = ky(t) — ki (¢) = const

o Self-scattering rate is added only to the single-particle rate
Tone = Tone(k) + Tseir (k)

° Free flight time calculation using self-scattering
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Stationary Two-particle MC Method

° Probability distribution of the magnitude of the momentum transfer ¢ = |¢|

q
P@)=CrH5—%5s  0<g<K
(q* + B2)?
° Generation of a random momentum transfer vector
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° Wave vectors after electron-electron scattering
Ky =k +gq, ky=k,—q

Exact conservation of momentum and energy!




Results for Bulk Silicon
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Results for Bulk Silicon
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Effect of Exchange Correlation

scattering events [1/ps]
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Position-dependent Two-particle MC Method

° Piece-wise constant approximation of g(ky,k,r)

in real space
initial
° Use bulk MC algorithm in each mesh cell
o Store initial state of a partner electron in each cell ®
o o @

° The following properties are used

° Time invariance of the stationary equation

° Markov property: duration of the remaining free
flight is independent of the past
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Distribution Function in a FET Channel
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Distribution Function in a FET Channel
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Conclusion

° The stationary MC algorithm for the BTE is extended to the 6D momentum space

The curse of high dimensionality does not apply to Monte Carlo

° Bulk semiconductors

Negligible effect of EES on stationary averages and distribution function

° Devices
EES enhances the high-energy tail in FET channels as predicted by P. Childs

Enhancement scales with the electron density




