3D Multi-Level-Set Simulation of Bottom Dielectric Isolation Process for Forksheet FETs

<u>In Ki Kim</u> and Sung-Min Hong

EECS, Gwangju Institute of Science and Technology (GIST)

International Workshop on Computational Nanotechnology (IWCN) 2023

Introduction

In-house Process Simulator Based on Multi-Level-Set Method

BDI Formation Simulation of FSFET

Outline

Introduction

In-house Process Simulator Based on Multi-Level-Set Method

BDI Formation Simulation of FSFET

CMOS Technology Scaling Roadmap

- We have moved the era of GAA transistor beyond the FinFET technology
- In the GAA transistor, CMOS scaling continues by improving device architecture

S. B. Samavedam et al., IEDM 2020

Gwangiu Institute of Science and Technology

Forksheet FET (FSFET) Transistor

• FSFET is regarded as a next generation device structure for CMOS scaling owing to their N/P space scaling potential

H. Mertens et al., Symposium on VLSI Tech. 2021

Work function metal (WFM) formation for FSFET

FSFET with Bottom Dielectric Isolation (BDI)

Challenging substrate doping process is eliminated in FSFET with BDI

FSFET w/o BDI

of substrate doping process

Increase difficulty

FSFET w/ BDI

Eliminate the doping process

H. Mertens et al., IEDM 2022

Geometric Problem in BDI Formation Process

Sloped etch profile of Si_{0.8}Ge_{0.2} is caused due to low selectivity of <u>sacrificial layer (Si_{0.8}Ge_{0.2})</u> to <u>replaced layer (Si_{0.5}Ge_{0.5})</u>, which can make problem in later work function metal fill process

BDI formation process

Sloped profile of Si_{0.8}Ge_{0.2} sacrificial layer

Introducing Si Separator for Plat Profile

• The sloped profile can be addressed by introducing the Si separator

Without Si separator

With Si separator

Numerical investigation is required

Outline

Introduction

In-house Process Simulator Based on Multi-Level-Set Method

BDI Formation Simulation of FSFET

Level-Set Method for Process Simulation

Level ϕ is closest distance from boundary

Time evolution of boundary (Hamilton-Jacobi equation)

Process simulation based on levelset method

Y. G. Yook et al., J. Phys. D: Appl. Phys. 2022

- Boundary motion of multiple material is calculated based on top layer level-set
- Velocity of exposed material is used in time evolution

Updating rule for top layer level-set in time evolution $\phi_{M}^{(t+\Delta t)}(\vec{x}) = \phi_{M}^{(t)}(\vec{x}) - \sum_{k=1}^{M} \Delta t_{k}(\vec{x}) \cdot \hat{H}(V_{k}, \phi_{M}^{(t)}, \vec{x})$ $\Delta t_{k}(\vec{x}) = \begin{cases} \frac{\phi_{k}^{(t)}(\vec{x}) - \phi_{k-1}^{(t)}(\vec{x})}{\hat{H}(V_{k}, \phi_{M}^{(t)}, \vec{x})} \\ \hat{H}(V_{k}, \phi_{M}^{(t)}, \vec{x}) \end{cases}$ $\Delta t_{k}(\vec{x}) = \begin{cases} \frac{\phi_{k}^{(t)}(\vec{x}) - \phi_{k-1}^{(t)}(\vec{x})}{\hat{H}(V_{k}, \phi_{M}^{(t)}, \vec{x})} \\ \Delta t - \sum_{l=k+1}^{M} \Delta t_{l}(\vec{x}) \\ 0 \end{cases} \qquad \phi_{M}: \text{ Top layer level-set} \\ \phi_{k}: \text{ Lower layer level-set} \end{cases}$

Updating rule for lower layer level-set in time evolution

$$\phi_k^{(\mathsf{t}+\Delta t)}(\vec{x}) = \max(\phi_M^{(\mathsf{t}+\Delta t)}(\vec{x}), \phi_k^{(\mathsf{t})}(\vec{x}))$$

O. Etrl et al., Comput. Phys. Commun. 2009

Closed Boundary Extraction

 By extracting lower layer boundary together excluding the boundary of overlapped region, closed boundary is generated

Opened boundary

Closed boundary

Simple 3D Process Simulation with In-House Tool

Science and Technology

Outline

Introduction

In-house Process Simulator Based on Multi-Level-Set Method

BDI Formation Simulation of FSFET

BDI Process Simulation without Si Separator

 The process simulation was conducted with in-house process simulator about the case without Si separator

Geometric Problem in Si_{0.5}Ge_{0.5} Release Process

BDI Process Simulation with Si Separator

The process simulation was conducted with in-house process simulator about the case with Si separator

Si_{0.5}Ge_{0.5} Release Process with Si Separator

Gwangju Institute of Science and Technology

BDI Process Emulation Result

With Si separator

• The effect of Si separator is numerically investigated with in-house 3D process simulator

Without Si separator

SiN

Outline

Introduction

In-house Process Simulator Based on Multi-Level-Set Method

BDI Formation Simulation of FSFET

Conclusion

- 3D topology simulator based-on level-set method has been developed for the process simulation of GAA logic device
- The effect of Si separator in BDI formation process for FSFET was successfully investigated with the developed in-house process simulator

Future work

- Entire process simulation of BDI FSFET will be conducted with developed in-house simulator
- Device simulation of generated device will be conducted by integrating the in-house process simulator with our in-house TCAD device simulator "G-Device"

Thank you

Acknowledgement

Financial support

- National Research Foundation of Korea (NRF)
 - NRF-2020M3H4A3081800

