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Using Physics as a Computer – “Let Physics do the Computing”

• Complex nonlinear dynamics for device functionality

• There are no design methods for such devices

• We use machine learning to design the hardware

• Coupled ring oscillators

Circuit design by machine learning enables the design of highly 
energy efficient preprocessors for image processing pipelines 2



Oscillatory Networks – binary signals represented by phase
In-phase (pulling) connection Anti-phase (pushing) connection

• Phase dynamics of oscillators  “does the computing”

• In most works, this devices is used as an associative 
memory, a phase-based Hopfield network

• There is no good learning / design method known 
to define these couplings

Frank C. Hoppensteadt, and Eugene M. Izhikevich. "Weakly connected oscillators." Weakly 

connected neural networks (1997): 247-293.

Csaba, Gyorgy, and Wolfgang Porod. "Noise immunity of oscillatory computing devices." IEEE 

Journal on Exploratory Solid-State Computational Devices and Circuits 6, no. 2 (2020): 164-169.
Steady-state phases represent pixel colors in an image
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Training based on machine learning

Build tensors representing the ring-
oscillator circuit and for all-to-all 

adjustable couplings

Integrating the ODE

Calculating loss function

Autograd calculation (gradients with 
respect to adjustable parameters)

Backpropagation 

Optimized parameters

Lai, Xiaolue, and Jaijeet Roychowdhury. "Analytical equations for predicting 

injection locking in LC and ring oscillators." In Proceedings of the IEEE 2005 

Custom Integrated Circuits Conference, 2005., pp. 461-464. IEEE, 2005.

Illustration of BPTT: Figure from: Lillicrap, Timothy P., and Adam 

Santoro. "Backpropagation through time and the brain."

Current opinion in neurobiology55 (2019): 82-89.

• We used the Pytorch-based torchdiffeq package

• The physical model is a SPICE-like ODE model 
of a ring oscillator

• Backpropagation through time (BPTT) can be 
applied to inverse-design or optimize any system 
that is describable by differential equations.
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A simple two-oscillator model

𝑅 + 𝑅 −
Loss function: corr(v1,6,v2,6) 

→ in-phase: max
→ anti-phase: min

Oscillator 1

Oscillator 2

𝑉6
1

𝑉6
2

Loss function (objective function):

For in-phase couplings:

Maximize 𝐜𝐨𝐫𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧(𝐕𝟔
𝟏, 𝑽𝟔

𝟐)

For anti-phase couplings:

Minimize 𝐜𝐨𝐫𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧(𝐕𝟔
𝟏, 𝑽𝟔

𝟐)
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A simple two-oscillator model
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The Pytorch-based solver adjusts the coupling strength to achieve the desired phase pattern.
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Convergence to more complex  patterns (5 ROs)

Initial state: arbitrary phases Final epoch: converged state

Loss function is defined as mean squared error of the ground truth (corresponding to the binary pattern 1,1,0,0,0). 
Phases are referenced to one of the oscillators. The pixel colors correspond to images, and we achieve
convergence to specified image patterns. 

Osc. 1… Osc. 5
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Circuit layout for image processing

Pixel value 

between 0 and 1.

Current 

generator’s 

phase

Oscillator 

network

Output

For an 𝑁-pixel image, all 𝑁 oscillators receive a phase that corresponds to the input greyscale image. 

The phase dynamics of the network converges to an image corresponding to one of learned patterns.
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Associative memory

Over 95% accuracy on 2 digits (0, 1) of MNIST – Machine-learned near-neighbor-coupled 
network performs better than fully connected Hebbian network.

⚫ Goal: converge from handwritten digits to target images 

⚫ Machine learning works on various interconnect 

topologies (fully connected vs. nearest neighbor)

⚫ Test set: MNIST images 

(downsampled 28 × 28 −→ 7 × 7)

⚫ Fully connected single layer:

▪ 49x48 = 2,352 parameters

▪ Hebbian Learning

⚫ Near-neighbor connected single layer:

▪ 4x3 + 20x5 + 25x8 = 312 parameters

▪ Machine Learning
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Beyond Associative Memory

Inputs

Hidden layer – sometime non- intuitive patterns 

Predictions

⚫ Loss function: maximize output for class 1, 
and minimize for class 0 (binary cross entropy)

⚫ 14x14 downsampled MNIST images

⚫ 2 layers (hidden - 196 ROs; output – 1 RO)

⚫ Fully connected hidden layer:

− 196x195 + 196 = 38,416 parameters

⚫ Near-neighbor connected hidden layer:

− 4x3 + 52*5 + 140*8 + 196 = 1,588 parameters

Works better than 
associative memory (>98%)

Oscillator network learns internal representations without an ‘ideal’ image
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Recognizing ten digits is a much harder problem

• For ten classes: ten networks – each network  

recognizes one digit and they are trained separately

• Winner-takes-all algorithm for selecting the best

• 10*(4x3 + 52*5 + 140*8 + 196) = 15,880 internal 

parameters, still small network compared to a 

software Neural Net

• Accuracy is around 65-70% - much better than 

random guessing (10%), but far from good 

• Ideally the networks should be trained together, not 

separately – but this is too computationally intensive
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Adding a small ‘standard’ second layer achieves much-improved performance

• A simple output layer with only 
325 parameters achieves very 
good performance

• Accuracy is 96 percent, 
comparable to much larger 
(several hundred thousand 
parameter) neural nets

• Output layer is easy to train, so 
it can do the sophisticated 
function of deciding from the 
preprocessing layer space

Ring-Oscillator Networks are powerful analog processors – but they are hard to train. 
Combining them with easier-to-train standard neural nets is a promising approach. 

12



Summary – a vision for a fully analog neural processor

Machine learning can be used for designing non-conventional hardware
Oscillator networks are one of the promising hardware candidates 13

• Machine learning learning allows for 
realizing non-trivial neural operations

• Functions beyond simple associative 
memory can be learned

• Oscillator networks work best as 
preprocessors: input layers are 
much easier to train than 
deeper layers

• Multi-layer networks offer 
very good performance with 
very few internal parameters





Classification task

• Binary classification using two layers

• 𝑙 𝑝 = − 1 − 𝑦 log 1 − 𝑝 − 𝑦𝑙𝑜𝑔(𝑝)
• p: “probability” of the input belonging to class 1           p ∈ [0,1]
• y: actual class of input            𝑦 ∈ {0,1}

• Training properties
• 500-500 training samples, 50-50 test samples
• 2 epochs, 10-element batches
• 8400-8500s total simulation time
• Integration time: ≈25s; learning step: ≈12-13s
• Parameter count: 490 vs 2499

• 98-99% accuracy

• No obvious structure in hidden layer

Example hidden layers 
for the different classes

Input

Hidden 

layer



Backup slide

Cross-entropy loss:  𝑒𝑥𝑛,𝑦𝑛
𝑒𝑥𝑛,𝑦𝑛

σ𝑐=1
𝐶 𝑒𝑥𝑛,𝑐

- xn,m: relative phase of output oscillator corresponding to the class of m
- yn: class of the n-th input
- C: number of classes for the classification



Reading the output (“phase difference”)

• Phase-like calculation: correlation
• Dot product of a window of the output

• Normalised by window length and std deviation

• Symmetric operation

• Two oscillators with  real phase difference 
from each other produces the same “phase-
like” difference from designated oscillator if 
that has  real phase difference from the two 
oscillators
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