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• Multiscale Models
• Hot carriers and polarons
• Machine Learning insights into 

Monte Carlo simulations

Topics
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Practical modelling: students investigating 
installation of solar on Bath Abbey roof
https://doi.org/10.1002/ese3.1069



Photovoltaics theory and modelling advances
Was descriptive, now predictive 
Can model complex and heterogeneous materials

Highlights
• Machine Learning to accelerate simulations
• Publicly available databases: Materials Project
• Electronic structure-based ab-initio molecular 

dynamics beyond 100 million atoms
• Model temperatures > 0K through free energies
• DFT inclusion of many body effects - band aligning
• Device Models that include mobile ions
• Mesoscopic models of charge transport

Electron backscattering 
diffraction plot for 
halide perovskite 
E Tennyson et al Nature 
Rev Mater (2019)
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Photoluminescence Quantum 
Efficiency PLQE 
Fa0.79Ma0.16Cs0.05Pb(I0.83Br0.17)3
Scale bar: 2 μm
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K Frohna et al Nature Nano Tech (2022)

Heterogeneity on submicron length scales dominates optoelectronic 
response for alloyed perovskites. Implications for hot carrier cooling.

PL spectra from black and red
highlighted regions

Multiscale Models: Why?
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McCallum et al APL Machine Learning accepted (2023)
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Models at varying length and 
timescale



Boltzmann Transport Equation, BTE
Statistical behaviour of a thermodynamic 

system away from equilibrium

f(p, t) is one-particle probability distribution function
p is momentum, t is time, F is field
All parameters can be calculated from first principles
Can solve BTE using Monte Carlo simulations

Hot Carriers and Polarons

Matthew 
Wolf

Lewis 
Irvine
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Monte Carlo device simulation for delocalized charges
Select free flight time δt in electrostatic 
field from uniformly distributed random 
number r and total scattering rate 𝛤
δt = 𝛤-1 log(r)

C Jacoboni et al Solid State Electronics 20 77 
(1977), Rev Modern Phys 55 646 (1983)

Charge carriers are scattered in polar 
semiconductors by:
• polar optical phonons
• acoustic phonons
• ionised impurities
• other carriers
• grain boundaries
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Hot Carriers

• 2D electronic spectroscopy measures evolution of 
hot carrier distributions from ∼10 fs

• 10-100 fs cooling dominated by carrier-carrier 
scattering

• As the distribution spreads out and cools,  carrier–
carrier scattering rate decreases and phonon 
scattering more important

• Fitting an effective temperature to a distribution can 
be misleading
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• Polaron radius >> lattice 
constant

• Itinerant state
• Shallow electronic state
• Observed that carrier mobility 

decreases with temperature

C Francini et al Nature Rev Mat (2021)

To what extent are charge carriers protected from interactions with 
phonons, defects and other charge carriers by their incorporation into 
polarons?
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Polarons



Scattering rates for polarons and band electrons in MAPbI3

• Acoustic phonon scattering 
rate most affected by polaron 
formation

• Negligible polaron influence 
on polar optical and impurity 
scattering rates 

• Difference in scattering rates 
between bare band electrons 
and polarons reduced at 300 K 
cf 100 K. 

• Polar optical phonon 
scattering dominates for band 
electrons and polarons. Solid lines: large electron polarons

Dashed lines: band electrons

10
L A D Irvine et al, Phys Rev B 103, L220305 (2021)



Predicted mobility vs temperature
• For bare band electrons at T > 200 K 

T−0.50 dependence  (optical phonons)
• Polaron mobility at T > 200 K ∼ T−0.18

• MAPbI3 experimental mobility ∼T−1.5

• Polaron formation does not have a large 
impact on carrier transport

• MAPbI3 unusual amongst perovskites in 
showing a large discrepancy with our 
model.
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Machine Learning

• Bayesian optimization, BO: strategy for 
minimizing BoltMC predictions for the 
mobility temperature exponent

• Input parameters vary within ±20% of best 
estimates

• BO uses Gaussian Processes to predict mean 
mobility temperature exponent from 
BoltMC and variance of GP prediction 

• Minimum predicted exponent is – 0.69 
• Probability of measured exponent (– 1.5) is 
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12Example for single simulation input showing how minimum 
of true simulation function can be found  



Key parameters for estimating mobilities

• The Inverse length scale is a measure of the 
sensitivity of the mobility with respect to input 
parameter 

• Acoustic and optical phonon scattering rates depend 
on dielectric constants at infinite and zero 
frequency, effective mass, elastic constant, polar 
optical phonon frequency, deformation potential 

• ML tells us to which parameters the band electron 
mobility and electron polaron mobility are most 
sensitive
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Summary
• Multiscale models are essential for understanding cell performance
• Kinetic models and Monte Carlo simulations bridge atomistic and 

macroscopic length scales. 
• We can build up the complexity of the model systematically
• Machine Learning, ML,  is a new tool to determine critical 

mechanisms responsible for experimental observations 
• ML can be applied to models at all length scales with varying 

computer resource requirements
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