## Machine Learning For Materials And Device Simulations

<u>Alison Walker</u> Samuel McCallum, Jamie Lerpiniere Department of Physics, University of Bath, UK <u>https://people.bath.ac.uk/pysabw/</u>

International Workshop On Computational Nanotechnology Barcelona June 2023

# Topics

- Multiscale Models
- Hot carriers and polarons
- Machine Learning insights into Monte Carlo simulations



**Practical modelling:** students investigating installation of solar on Bath Abbey roof https://doi.org/10.1002/ese3.1069

#### Photovoltaics theory and modelling advances

Was descriptive, now predictive Can model complex and heterogeneous materials



Electron backscattering diffraction plot for halide perovskite E Tennyson et al *Nature Rev Mater* (2019)

### Highlights

- Machine Learning to accelerate simulations
- Publicly available databases: Materials Project
- Electronic structure-based *ab-initio* molecular dynamics beyond 100 million atoms
- Model temperatures > 0K through free energies
- DFT inclusion of many body effects band aligning
- Device Models that include mobile ions
- Mesoscopic models of charge transport

# Multiscale Models: Why?



Photoluminescence Quantum Efficiency PLQE  $Fa_{0.79}Ma_{0.16}Cs_{0.05}Pb(I_{0.83}Br_{0.17})_3$ Scale bar: 2 µm



PL spectra from black and red highlighted regions

K Frohna et al Nature Nano Tech (2022)

Heterogeneity on submicron length scales dominates optoelectronic response for alloyed perovskites. Implications for hot carrier cooling.



## **Hot Carriers and Polarons**

Boltzmann Transport Equation, BTE Statistical behaviour of a thermodynamic system away from equilibrium









Jamie Lerpiniere Lewis Matthew Irvine Wolf

William Saunders

$$\frac{\partial f}{\partial t} + \mathbf{F} \cdot \frac{\partial f}{\partial \mathbf{p}} = \left(\frac{\partial f}{\partial t}\right)_{\text{scatt.}}$$

f(p, t) is one-particle probability distribution function
p is momentum, t is time, F is field
All parameters can be calculated from first principles
Can solve BTE using Monte Carlo simulations

### Monte Carlo device simulation for delocalized charges



Select free flight time  $\delta t$  in electrostatic field from uniformly distributed random number r and total scattering rate  $\Gamma$  $\delta t = \Gamma^{-1} \log(r)$ 

Charge carriers are scattered in polar semiconductors by:

- polar optical phonons
- acoustic phonons
- ionised impurities
- other carriers
- grain boundaries

C Jacoboni et al *Solid State Electronics* **20** 77 (1977), *Rev Modern Phys* **55** 646 (1983)

## **Hot Carriers**

- 2D electronic spectroscopy measures evolution of hot carrier distributions from  $\sim 10$  fs
- 10-100 fs cooling dominated by carrier-carrier scattering
- As the distribution spreads out and cools, carriercarrier scattering rate decreases and phonon scattering more important
- Fitting an effective temperature to a distribution can be misleading

# Polarons



- Polaron radius >> lattice constant
- Itinerant state
- Shallow electronic state
- Observed that carrier mobility decreases with temperature

To what extent are charge carriers protected from interactions with phonons, defects and other charge carriers by their incorporation into polarons?

### Scattering rates for polarons and band electrons in MAPbl<sub>3</sub>



Solid lines: large electron polarons Dashed lines: band electrons

- Acoustic phonon scattering rate most affected by polaron formation
- Negligible polaron influence on polar optical and impurity scattering rates
- Difference in scattering rates between bare band electrons and polarons reduced at 300 K cf 100 K.
- Polar optical phonon scattering dominates for band electrons and polarons.

L A D Irvine et al, Phys Rev B 103, L220305 (2021)

### Predicted mobility vs temperature



- For bare band electrons at T > 200 K T<sup>-0.50</sup> dependence (optical phonons)
- Polaron mobility at T > 200 K ~  $T^{-0.18}$
- $MAPbI_3$  experimental mobility  $\sim T^{-1.5}$
- Polaron formation does not have a large impact on carrier transport
- MAPbl<sub>3</sub> unusual amongst perovskites in showing a large discrepancy with our model.

# **Machine Learning**



Example for single simulation input showing how minimum of true simulation function can be found





Sam Jamie McCallum Lerpiniere

- Bayesian optimization, BO: strategy for minimizing BoltMC predictions for the mobility temperature exponent
- Input parameters vary within ±20% of best estimates
- BO uses Gaussian Processes to predict mean mobility temperature exponent from BoltMC and variance of GP prediction
- Minimum predicted exponent is 0.69
- Probability of measured exponent (- 1.5) is 10<sup>-24</sup>

### Key parameters for estimating mobilities

- The Inverse length scale is a measure of the sensitivity of the mobility with respect to input parameter
- Acoustic and optical phonon scattering rates depend on dielectric constants at infinite and zero frequency, effective mass, elastic constant, polar optical phonon frequency, deformation potential
- ML tells us to which parameters the band electron mobility and electron polaron mobility are most sensitive

### **Summary**

- Multiscale models are essential for understanding cell performance
- Kinetic models and Monte Carlo simulations bridge atomistic and macroscopic length scales.
- We can build up the complexity of the model systematically
- Machine Learning, ML, is a new tool to determine critical mechanisms responsible for experimental observations
- ML can be applied to models at all length scales with varying computer resource requirements

### **Acknowledgements**

University of BathKarMatthew WolfPasWilliam SaundersLewis Irvine

Karlsruhe Institute of Technology

**Pascal Friederich** 

