IMQU

Institut Matériaux Microélectronique Nanosciences de Provence

The Quantum Cascade Cooler: an NEGF analysis

Guéric ETESSE¹, Chloé Salhani², Xiangyu Zhu², Nicolas Cavassilas¹, Kazuhiko Hirakawa^{2,3} and Marc Bescond^{1,2,3}

¹IM2NP, UMR CNRS 7334, Aix-Marseille Université, Technopôle de Château-Gombert, Bâtiment Néel, 13453 Marseille, France ²Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku,Tokyo 153-8505, Japan ³LIMMS-CNRS, UMI 2820, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

Institut Matériaux Microélectronique Nanosciences de Provence

Outline:

- Context
- Cooling devices
 - Asymmetric double barrier
 - Quantum Cascade Cooler
- Self-consistent method
- Results
 - Performance comparison
 - Electron temperature oscillations

The need for new cooling devices:

Institut Matériaux Microélectronique Nanosciences de Provence

ISE

3/14

ssociation

ARNOT

Asymmetric double barrier

[2] M.Bescond et al. J. Phys.: Condens. Matter 30, 064005 (2018).

> Electron temperature reduced by up to 50K. (evaporative cooling)

Institut Matériaux Microélectronique Nanosciences de Provence

Aix+Marseille

NIVERSITÉ

TOULON

ISEN

Quantum Cascade Cooler

- QCC consists of a periodic serie of the previous structure
- > 1 electron absorbs several phonons in cascade along the structure

Self-consistent method

Green's functions coupled to Heat and Poisson equations:

NEGF equations for electrons

Heat equation $-\nabla \cdot (\kappa_{th} \nabla T_{AC}) = Q \left[G^{\leq}(T_{AC}, T_{OP}) \right]$

Poisson equation $\nabla \cdot (\epsilon \nabla V) = -\rho[G^{\leq}]$

Including interactions with:

- Acoustic Phonons (AP) elastic
- Polar optical phonons (POP) inelastic [3] Through the self-energies

[3] M.Moussavou, et. al. Phys. Rev. Appl., 10, 064023 (2018).

Institut Matériaux Microélectronique Nanosciences de Provence

Performance comparaison

- Both devices have same length
- Energy gap between emitter Fermi level and first QW ground state conserved
- Energy gap between last QW ground state and collector barrier conserved

OUL

Performance comparaison

SQW & QCC Cooling power and COP:

Higher maximum Cooling Power for QCC than SQW (Single Quantum Well)

Higher COP at max Cooling Power

Institut Matériaux Microélectronique Nanosciences de Provence

Aix+Marseille

O

Temperature oscillations

Electron temperatures

$$\hbar\omega_{LO}$$
 = 35 meV

Polar optical phonon energy

- Anticorrelation between electron temperatures
- Period of the oscillations linked to the polar optical phonon energy

> Analyze the injection and extraction current spectra, impacting the electron distribution

Injection in QW2 @ ground state energy & Thermionic process→ Cooling QW2

10/14

Institut Matériaux Microélectronique Nanosciences de Provence

Aix Marseille

Electron injected in QW2 above ground state energy -> Heating QW2

11/14

Institut Matériaux Microélectronique Nanosciences de Provence

Aix Marseille

OUL

Conclusion

- Proof of concept for the Quantum Cascade Cooler, a new type of cooling nano-device
- Performances are increased when compared to the SQW
- Interpretation on the role of the optical phonon energy in multiple quantum well heterostructure

Thank you

Institut Matériaux Microélectronique Nanosciences de Provence cnrs

