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*Our computational approach for free @®
electrons:

e Charge self-consistent NEGF implemented via Contact Block
Reduction method scales linearly with the simulation volume O(V) |

* Electron-electron interaction via DFT-LDA exchange-correlation
* Real-space scattering on discrete impurities

* Inelastic scattering via Matthiessen’s rule and mobility models
* Kinetic energy term: the effective mass tensor

This approach allows to accurately represent all open-system electron
properties: the current, current spectrum, transmission, LDOS.

*D. Mamaluy, J.P. Mendez et al. Commun Phys 4, 205 (2021)
J.P. Mendez, D. Mamaluy, Sci Rep 12, 16397 (2022)
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| Predictive quantum transport simulations
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the experimental tunneling resistances. Most effective mass
models are limited in terms of capturing all the band minima
at different k-points. We show in Figure 2a that there are sev-
eral I' and A band minima at different k-points, with a notable
non-parabolicity of the bands at higher k. As a result, effective
mass models will tend to underestimate the density of states
in the leads, leading to an overestimation of the tunneling
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dispersion and 3D potential profile in which excellent agree-
ment is achieved. Our results highlight the limitations of
using single-band theories such as WKB and effective mass
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| Simulations of modern GAA NSFETs with

ticht-binding codes are still too expensive
SILVACO/NEMOS scaling
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‘Charge sensing with SETs




‘Charge sensing with O-layer tunnel junction
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‘ 6-layer T)s are ultrasensitive to charges!

Applied voltage: 100mV
HPC Cluster: SOLO
~ 700 simulations

a I(],V > cond-mat > arXiv-2209.11343

Condensed Matter > Mesoscale and Nanoscale Physics
[Submitted on 22 Sep 2022]
Influence of imperfections on tunneling rate in J-layer junctions

Juan P. Mendez, Shashank Misra, Denis Mamaluy

. Current (A)
g - Current: o 40
—~7 - 2.1x10®
E 6 1.8x10
; 5 . 1.5x10°®
C 4- IIIIIIIIIIIIIIIIIIIIIIII.IIIIIII.-.i-.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 1_2X10-6
23 9.6x107
. 6.8x107
o 1 4x107
N L I L e R I B 1.2x10”
10 R R R 28 30
Possible applications?
Current ratio
H Iwi /lwi ou
8- Current ratio: (i t:g !
~7- 16.3
c 52 - 1.850 146
= c - 5-layer E 5-layer 12.9
- : 11.2
4+ TSI 1 850 ' oY | -
S ;- 7.8
= ) 6.1
- 4.4
5 1% 27
- 1

Position X (nm)



‘ 6-layer T]s are ultrasensitive to charges! ®

Ultrasensitive device... Quantum FET-based sensors

* Chemical/Biological detection
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Conclusions

e 1) Highly-conducting highly-confined systems require an open-system
treatment (e.g. NEGF) to correctly represent the number of occupied
states, LDOS and current. |

* 2) Kinetic energy operator with the effective mass tensor enables
truly predictive transport simulations in silicon. |

* 3) Quantum charge sensing is possible with extremely simple
(“inverse-SET”) structures, that are just 0-layer Tunnel Junctions. The
effect is due to the conduction band quantization
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