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• Novel quantum sensing

APAM APAM Applications

• Quantum Computing 

• Beyond Moore Computing 

Atomic Precision Advanced Manufacturing (APAM) 

APAM devices

Si: P δ-layer wire

Si: P δ-layer Tunnel Junction
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δ-layer tunnel junction FET



*Our computational approach for free 
electrons:

• Charge self-consistent NEGF implemented via Contact Block 
Reduction method scales linearly with the simulation volume O(V)

• Electron-electron interaction via DFT-LDA exchange-correlation

• Real-space scattering on discrete impurities

• Inelastic scattering via Matthiessen’s rule and mobility models 

• Kinetic energy term: the effective mass tensor 

This approach allows to accurately represent all open-system electron 
properties: the current, current spectrum, transmission, LDOS.

*D. Mamaluy, J.P. Mendez et al. Commun Phys 4, 205 (2021)
J.P. Mendez, D. Mamaluy, Sci Rep 12, 16397 (2022)



δ-layer thickness 
increase

Prior simulations and confirmations



Predictive quantum transport simulations
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Simulations of modern GAA NSFETs with 
tight-binding codes are still too expensive

SILVACO/NEMO5 scaling 
Source: "Quantum Transport Simulation at Atomistic 

Accuracy of a Nanowire FET", 

Journal for Process and Device Engineers, Volume 32, 

Number 8, August 2022, SILVACO

IBM, Intel and Samsung 
partnership* 

* https://www.hpcwire.com/2021/05/06/ibm-research-debuts-2nm-test-chip-with-50-billion-transistors/

Required simulation volume: ~ 70nm x 50nm x 30nm
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>185 days

https://www.hpcwire.com/2021/05/06/ibm-research-debuts-2nm-test-chip-with-50-billion-transistors/


Charge sensing with SETs
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Charge sensing with δ-layer tunnel junction
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δ-layer TJs are ultrasensitive to charges! 
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δ-layer δ-layer
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δ-layer TJs are ultrasensitive to charges! 
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• Chemical/Biological detection 

• Charge Sensing at Room Temperature

Source

Si substrate, NA
substrate

P δ-layer P δ-layer Drain

Si cap

Radiation

10 12 14 16 18 20 22 24 26 28 30

0

1

2

3

4

5

6

7

8

P
o

s
it
io

n
 Y

 (
n

m
)

Position X (nm)

1.2x10-7

4x10-7

6.8x10-7

9.6x10-7

1.2x10-6

1.5x10-6

1.8x10-6

2.1x10-6

2.4x10-6

Current (A)

Ultrasensitive device… Quantum FET-based sensors



Conclusions

• 1) Highly-conducting highly-confined systems require an open-system
treatment (e.g. NEGF) to correctly represent the number of occupied
states, LDOS and current.

• 2) Kinetic energy operator with the effective mass tensor enables
truly predictive transport simulations in silicon.

• 3) Quantum charge sensing is possible with extremely simple
(“inverse-SET”) structures, that are just δ-layer Tunnel Junctions. The
effect is due to the conduction band quantization
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