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FIG. 6. Efficiency "TJ for a solar cell at temperature Tc=300oK 
exposed to a blackbody sun at temperature T.=6000oK. Curve 
(f) is the detailed balance limit of efficiency, assuming the cell is 
a blackbody (i.e., t,=tc= 1). Curve (j) is the semiempiricallimit, 
or limit conversion efficiency of Prince (see footnote 3). + repre-
sents the "best experimental efficiency obtained to date" for Si 
(see footnote 6). Curves (g), (h), and (i) are modified to corre-
spond to 90% absorption ofradiation (i.e., t,= Ic=0.9) and 100-mw 
incident solar energy. The values for the / quantities discussed in 
Sec. 6 are: (f) /=1.09XlO-5 (fw=2.18XlO-5, /c=1) t,=lc=1; 
(g)/=0.68XlO-5 (fw=1.36XlO-S,/c=1) 1,=tc=0.9; (h)/=0.68 
X 10-8 (fw= 1.36 X 10-5, /c= 10-3) 1,=lc=0.9; (i) / =0.68X 10-11 

(fw= 1.36 X 10-5, /c= 10-6) 1,=t,=0.9. 

To summarize, the efficiency is defined as the electrical 
power out of the cell into a matched load, divided by 
the incident solar energy falling on the cell. The factors 
in Eq. (5.6) are as follows: ts is the probability, averaged 
over incident solar photons having sufficient energy to 
produce electron-hole pairs,lthat a photon will produce 
an electron-hole pair; u(Xy) is the ultimate efficiency in 
accordance with Eq. (2.1); V(Xg,Xe,j) is the ratio of the 
open-circuit voltage to the energy gap of the cell; and 
m(vxg/Xe) is the impedance matching factor, which is a 
function of the ratio of the open-circuit voltage to 
thermal voltage for the cell. 

In the following section results of calculation of '1J are 
presented and compared with the semiempirical limit 
of efficiency. 

6. CONCLUSIONS 

Efficiencies computed on the basis of Eq. (5.6) are 
shown in Figs. 5 and 6 as a function of Vo, based upon 
the following values for the parameters: 

xe=Tc/Ts=0.05 (Ts=6000oK, Te=3000K) 
(6.1) 

xg=qVg/kTs = 1.94Vg. 
Curves are given for different values of the parameter 
j. Figure 5 shows the decrease of the efficiency with 
f lowered from its maximum value 1 by factors of 10-a• 
For Fig. 6, f was calculated according to its definition 
(3.20). Curve (f) corresponds to a perfectly absorbing 
cell (tc=ts= 1) with normal incidence (jw=ws/rr) and 
no nonradiative recombination (je= 1). Curves (g), 
(h) and (i) are calculated on the assumption of 90% 
absorption with a value of 1.36X 10-6 for fw, which 

gives 100 mw/cm2 incident power, and different values 
of fe. 

Also on Fig. 6 is shown the generally accepted curve 
for the "limit conversion efficiency." This curve is in 
agreement with Prince3 and Loferski4 as reported by 
Wolf.6 Also shown is the value of 14% for silicon solar 
cells, which Wolf6 reports as the best achieved to date. 

On the basis of the semiempirical limit it would 
appear that silicon solar cells might be improved by 
from 14 to 21.7%, an improvement of a factor of 1.55. 
On the basis of the detailed balance limit, the improve-
ment might be 14 to 26% [curve (g)], or a factor of 
1.9. The true physical limit for silicon must lie some-
where between these two limits. 

Figure 7 shows the current voltage characteristics 
for several silicon solar cells. These are discussed 
further in the Appendix. The figure also shows the 
minimum forward current characteristic for a planar 
cell with tc= 1 as discussed in Sec. 3. 

Somewhere between the empirical curves and the 
limit set by detailed balance is a true limit determined 
basically by the fact that silicon is element 14 in the 
Periodic Table and has a certain rate of "unavoidable"21 
nonradiative transitions. 

On the basis of the preceding paragraphs two ques-
tions are obvious: (1) Where is the true physical limit 
and what processes determine it? (2) What determines 
the location of the present experimental curves? 

It is evident that question (1) will be difficult if not 
impossible to answer before question (2) is answered. 
We shall first discuss question (2). 

It has been noted by many writers2 ,4,22 on solar-cell 
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FIG. 7. Current-voltage relationships at room temperature for 
silicon p-n junctions used as solar energy converters. Curves 1-3 
are empirical; the dashed line on the left represents the slope for 
an exponent kT!q; the heavy line on the right gives the optimum 
for radiative recombination only; and the question-marked line 
simulates a hypothetical maximum efficient junction, limited by 
the inherent properties of silicon. 

21 P. T. Landsberg, Proc. Inst. Elec. Engrs. (London) 106, 
Pt. II, Supp\. No. 17,908 (1959). 

22 V. M. Tuchkevich and V. E. Chelnokov, J. Tech. Phys. 
(U.S.S.R.) 28, 2115 (1958). 

Downloaded 25 Oct 2011 to 147.83.123.130. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

Detailed balance (Shockley&Queisser)

Done with 
slide rule

Slide Rule Era
 
 
 
 
 
 

 
Figure 3. Silicon Nanowire with rough interface passivated by 
hydrogen with diameter D2=3.21nm  

The transmission coefficients for the large diameter rough nanowires show less effect of the interface 
roughness. The shift between the onset of transmission in the rough device and the pristine device is 
50 meV. Furthermore, a small resonance is observed around 1.63 eV. Note, there is an obvious 
correlation between the band structure in Figure 2 and the steps in the pristine nanowire transmission, 
e.g. the 2 modes appearing at 1.7 eV comes from the bulk Δ2 valleys. 

 
 

Figure 4. Transmission coefficients for a 
pristine wire (full line) and for two rough 
wires. The diameter is D1. 

 Figure 5. Transmission coefficients for a 
pristine wire (full line) and for two rough 
wires. The diameter is D2. 
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Motivation
• 3D simulations are prohibited for large structures and 

limited to small regions. Computational intensive
• Paradigm: 
“Can we use the “Recursive” 1D NEGF to calculate the 
current and density of nanostructures in which the potential 
has translation symmetry?”
….this will require approximations
in plain words 
“can we use the 1D NEGF equations instead of the 3D NEGF 
equations?”



Motivation
“Can we just use the 1D NEGF Eqs instead of the 3D 

NEGF Eqs for a 3D problem with translation symmetry?”

3D  diode 1D  diode



Motivation
• Double Barriers in Source and drain to generate hot 

carrier ejection means to Improve power efficiencies in 
solar cells, Fig. 1D DOS

M. Green (Third generation Photovoltaics, book) 



• Yes, this problem has been solved by: 

• The problem is that they needed to calculate the complete 
GR matrix, so the equations are not suitable for the 
Recursive algorithm. However, they can handle inelastic 
Scattering !!!

Motivation 

PHYSICAL REVIEW B VOLUME 45, NUMBER 12 15 MARCH 1992-II
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The effect of inelastic scattering on quantum electron transport through double-barrier resonant-
tunneling structures with large cross-sectional areas is studied numerically using the approach based on
the nonequilibrium Green s-function formalism of Keldysh, Kadanoff, and Baym. The Markov assump-
tion is not made, and the energy coordinate is retained. This makes the inclusion of the phonon-energy
spectrum straightforward both conceptually and in practice. The electron-phonon interaction is treated
in the self-consistent first Born approximation (SCFBA). The Pauli exclusion principle is taken into ac-
count exactly within the SCFBA. The retention of the energy coordinate allows the calculation of a
number of quantities that give insight into the effect of inelastic scattering on electron transport: The
effect of inelastic scattering on the occupation of the energy levels, the density of states, the energy distri-
bution of the current density, and the power density is calculated from a quantum kinetic equation for
actual device structures under high bias.

I. INTRODUCTION

The treatment of inelastic scattering in quantum trans-
port is interesting from both a theoretical and a practical
point of view. From a practical perspective, the success
of the technology of molecular-beam epitaxy has allowed
the fabrication of layered semiconductor structures such
as double-barrier resonant-tunneling diodes (DBRTD's), '
superlattices, and hot-electron injection devices which
operate on quantum mechanical principles under high
bias. If one wishes to describe experiments on these
structures, such as photoluminescence measurements of
the occupation of resonant levels, or the valley current
of a DBRTD, a treatment of inelastic scattering is neces-
sary.
Theoretically, there have been many studies of the

effect of inelastic scattering on resonant tunneling.
The treatment of the elastic and inelastic scattering
ranges in various degrees of sophistication. As discussed
by Pevzner, Sols, and Hess' and Sols, ' it is relatively
easy to treat coherent elastic scattering from potential
barriers and device geometries exactly using numerical
methods while the inelastic scattering is treated in an ap-
proximation. Two approximations are commonly
used: ' (1) the inelastic scattering is confined to a finite
region of space, and (2) the inelastic scattering is treated
within the one-electron picture, i.e., the Pauli exclusion
principle is ignored.
The numerical approach that has been used to study

the effect of inelastic scattering on DBRTD's has been
based on a solution of the Wigner-Weyl transform of the
Liouville equation for the Wigner function. ' ' The in-
clusion of inelastic scattering in the above work has been
conceptually problematic. ' ' The exact forms for the
self-energy terms have recently been derived from a
Wigner-Weyl transformation of the general equations of
Keldysh, KadanofF', and Baym. ' However, in practice, a
relaxation-time approximation is used. '

The approach used in this work begins with the general
many-body, non-equilibrium Green's-function theory of
Keldysh, Kadanoff, and Baym, ' which we will refer to
as the KKB formalism. It is restricted to steady state.
The Pauli exclusion principle is rigorously included.
Three approximations are made.
(i) Electron-phonon interaction is treated in the self-

consistent first Born approximation, which means that
only one-phonon scattering is included, but it is included
exactly (to all orders in the language of perturbation
theory).
(ii) The phonons are modeled as a bath of independent

oscillators which interact with the electrons locally. This
corresponds to a simple model of deformation potential
dispersionless optical phonons with the potential felt by
the electrons proportional to the ionic displacement.
(iii) The phonon coordinates are traced out by assum-

ing that the phonons remain in equilibrium.

The phonons are not restricted to a finite region of space
but extend throughout the device and contacts from —~
to + ao in the case of a 1D (Ref. 24) simulation.
The fundamental quantity in the KKB formalism is the

two-time correlation function, G (r„t,;rz, t2). By per-
forming a Wigner transform on the time variables, we
can write the correlation function as G (r„r2',E, T),
where T =—,'(t, +tz) and Elhi is the Fourier transform
variable corresponding to the time difference coordinate
( t, t z ). The —fundamental quantity in the Liouville
equation, the density matrix p(r&, r2, T), is obtained by
setting t, =t2 in G, which is equivalent to integrating
over energy, p(r, , rz, T)= J(dE/2n)G (r, r';E, T). .

The KKB formalism gives energy resolved informa-
tion. The retention of the energy coordinate makes the
inclusion of the phonon energy spectrum straightforward
both conceptually and in practice. It also allows the cal-
culation of a number of quantities which give insight into
the effect of inelastic scattering on quantum electron
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The Method( Ballistic)
The Ballistic NEGF Equations for space invariant systems:

𝐸 − 𝐸! −𝐻"# − Σ$ 𝐸 − 𝐸! 𝐺(𝐸 − 𝐸!) = 1       

𝐺% 𝐸, 𝐸! = 𝐺Σ&%𝐺'

*Eqs (76-77) in 1964, Keldysh, “Diagram technique for NonEquilibrium Processes”.
However,  because the KMS(equilibrium) boundary condition for 
Σ&% ~ 𝑓𝐺
 
 𝐺% 𝐸, 𝐸! = 𝑓 𝐸 𝑊(𝐸 − 𝐸!)

 or                     𝐺% 𝐸, 𝐸! = ( )
( )*)!

𝐺%(𝐸 − 𝐸!, 0)

Where 𝑓 𝐸  is the Fermi-Dirac function for the contact 



• The carrier density ni and current ji  in point i 

𝑛! =
𝑚

2𝜋"Δ ℏ"(#

$
𝑑𝐸(

#

%
𝑑𝐸&

𝑓 𝐸
𝑓 𝐸& 𝐺!,!

((𝐸&, 0)

Where ∆ is the spatial discretization step and 𝐸& = 𝐸 − 𝐸)

         𝑗! =
*
ℏ,! ∫#

$𝑑𝐸 ∫#
% 𝑑𝐸& - %

- %"
(𝐺!,!./( 𝐸&, 0 − 𝐺!./,!( 𝐸&, 0 )

Note that the G< is current conserving for one E, then our current does 
not depend on the position i !!!
And that the NEGF eq in the previous slide can use the Recursive 
algorithm and therefore only diagonal and off diagonal elements are 
calculated

The Method (Ballistic)



The Method (Ballistic)
• The previous equations can be simplified to contain one 

energy integration.

𝑛! =
𝑚

𝜋"Δ ℏ"
'
#

$
𝑑𝐸%

ln(1 + 𝑒&' (!&) )

𝛽 1
1 + 𝑒' (!&)

𝐺!,!
+ (𝐸%, 0)

Where 𝜇 is the fermi energy and 𝛽 = ,
-.

 𝑗! =
/
ℏ1" ∫#

$ 𝑑𝐸% 23(,56
#$ %!#& )

' '

'()$ %!#&
(𝐺!,!5,+ 𝐸%, 0 − 𝐺!5,,!+ 𝐸%, 0 )



Method (ballistic)

• In the case of Boltzmann statistics these expression 
became even simpler.

𝑛! =
𝑚

𝜋"Δ ℏ"𝛽
'
#

$
𝑑𝐸%𝐺!,!

+ (𝐸%, 0)

          𝑗! =
/

ℏ'1" ∫#
$ 𝑑𝐸%(𝐺!,!5,+ 𝐸%, 0 − 𝐺!5,,!+ 𝐸%, 0 )



Method (Ballistic)
• Simple cases (Diode ballistic) 

𝑗 = +,-
ℏ"/#

𝑒*/()$1)%)(𝑒/)& − 1)
This equation is obtained 
by using

 𝐺% = 𝑖 (())-3
'( )*)+

ℏ#4

Where 𝑘 = +-()*)!)
ℏ#

And assuming Boltzmann statistics

But it can also be derived from semiclassical statistical physics:

𝑗 =
𝑞
4𝜋5

6
ℏ𝑘6
𝑚

𝑓 𝑘 𝑑5𝑘

EF

EB-EA
Eb+EF



Ballistic Currents (GaAs) 

• 1e17 in both n-i-p diode
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Elastic Scattering (approximation) 
𝐸 − 𝐸) −𝐻/0 − Σ1 𝐸 − 𝐸) − Σ2(𝐸 − 𝐸)) 𝐺(𝐸 − 𝐸)) = 1       

𝐺( 𝐸, 𝐸) = 𝐺(Σ3(+Σ2()𝐺4

We assume that Σ2 𝐸, 𝐸) = Σ2 𝐸 − 𝐸) , the self-energies need to 
be properly renormalized to reflect the 3D environment.

For 2 contacts:
 𝐺/( 𝐸 − 𝐸), 0 = 𝐺(Σ/(+Σ/2( )𝐺4 ,  𝐺"( 𝐸, 𝐸) = 𝐺(Σ"(+Σ"2( )𝐺4

 𝐺( 𝐸, 𝐸) = -/ %
-/ %5%#

𝐺/( 𝐸 − 𝐸), 0 + -" %
-" %5%#

𝐺"( (𝐸 − 𝐸), 0)

Note: This method is exact in the ballistic limit and does not assume 
that Kadanoff-Baym Ansatz ie  𝐺(~𝑓𝐺, it is current conserving.



Elastic Scattering (approximation) 
• GaAs pin Diode 

• Current conservation elastic scattering scattering/ comparison Ballistic 
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Inelastic Scattering (Thoughts)
For inelastic scattering the following expression is not current conserving

  (A)     𝑗$ =
%
ℏ'! ∫(

)𝑑𝐸 ∫(
* 𝑑𝐸+ , *

, *"
(𝐺$,$./0 𝐸+, 0 − 𝐺$./,$0 𝐸+, 0 )

Let 𝐾$ 𝐸+ = 𝐺$,$./0 𝐸+, 0 − 𝐺$./,$0 𝐸+, 0
For elastic scattering 𝐾$ 𝐸+  is independent of i, ⟹ eq (A) is current conserving,

For inelastic scattering , ∫𝑑𝐸′𝐾$ 𝐸+  is independent of i, so eq(A) depend on i.

For Scattering mechanism approximations :
T. Kubis’Thesis has done a wonderful work to reduce the selfenergies and study some approximations.
 A. Svizhenko and M. P. Anantram “the role of scattering in nanotransistors”, use a simple approximation
U. Aeberhard. Quantum-kinetic theory of photocurrent generation via direct and phonon-mediated 
optical transitions

Σ12 𝐸 = /𝜌3𝑑𝐸31
%±

𝐷±(𝑞) 𝐺12 𝐸 ± 𝐸% , 𝐸3



Inelastic Scattering

• Current conservation
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Direct Recombination 
• Aims:  simulation of larger structures using NEGF..length 

around 600nm and  20 microns wide ..for solar cell  
applications.
• Hot phonon descriptions…quantized injections/contacts
Example:

Density of states of a GaSb diode with resonant barriers before the end contacts. The 
contact material and dimension could be optimized to inject hot electron into the contacts.

Substantial work have been done by U. Aeberhard in NEGF formalism for solar cells



Direct Recombination (NEGF)  
Expression for the total recombination current 

∇ : 𝐽8(𝑟, 𝐸) =
𝑞
2𝜋ℏ

'𝑑𝑟%(𝐺8+ Σ89(𝐸) − 𝐺89 Σ8+(𝐸))

𝐼 = /
":ℏ ∫𝑑𝑟 ∫𝑑𝐸 ∫𝑑𝑟

%(𝐺8+ Σ89(𝐸) − 𝐺89 Σ8+(𝐸))     (1)

𝐼 = 𝑞𝑛!"𝐵 𝑉 (𝑒'(*+ − 1)                            (2)

• B  Roosbroeck constant, ni intrinsic concentration, V volume. 
No photon recycling considered.  

M. Green (Photovoltaics) and W. van Roosbroeck and W. Shockley (Phys. Rev. 94, 
1558  (1954)).  Shockley-Queisser, Journal of Applied Physics. 32 (3): 510–519 

Emission Absorption



Direct Recombination (NEGF)  
The self-energy for electron-hole recombination (outscattering)

Σ89 𝐸 =C
/

𝑀(𝑞)(𝑁/+1)𝐺;+ 𝐸 − 𝐸/

Nq= Bose-Einstein distribution, M(q) coupling constant.

Σ89 𝐸 = 𝐷∗ 𝐺;+ 𝐸 − 𝐸=∗

• D* is a renormalized coupling. EG* (slightly larger than the 
Bandgap)  is between the maximum of n(E) and p(E).
• We can find the constant D* by putting Eq (1)=Eq (2) for 

generation
Even if photon Absorption and Emission are inelastic processes, 
the electron-hole system is current conserving at each energy. 



Conclusions

• An exact method to solve 3D NEGF by solving 1D NEGF 
for Ballistic for Translation invariant systems (TI).
• For Elastic Scattering, an approximate method to solve 

3D NEGF by 1D NEGF 
• For a Restricted Recombination model, 3D NEGF can be 

substituted by 1D NEGF
• For Inelastic Scattering the method is not current 

conserving and needs to be modified, however in most 
of the cases, the error in current conservation is good 
enough.
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