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EMC and NEGF

v EMC (ensemble Monte Carlo) and NEGF (non-equilibrium Green’s 
functions) both had their origins in the 1940s

v EMC arose from simulation work at Los Alamos on neutron transport

v EMC has been used mostly in classical transport to solve the Boltzmann 
equation

v NEGF began with Julian Schwinger

v NEGF has been used mostly in quantum transport to determine 
correlation functions needed to achieve the distribution function



Quantum Mechanics with EMC
Ø Introducing a joint spectral density in place of d-function 

in Fermi golden rule: Fischetti (1984), Porod and Ferry 
(1985), Jauho (and Reggiani, Lugli) (1985,1989,...),

Ø Bohm and wave functions: Oriols (1998), Chen et al. 
(1992), Shifren et al. (2003) 

Ø Using a quantum kinetic equation with JSD function: 
Jauho and Wilkins (1982), Jauho (1983,1989)

Ø Using Wigner equation of motion with JSD: Jauho (1989)

Ø The JSD is usually approximated by a Lorentzian

None of these use the true 
NEGF in the EMC!



EMC and NEGF

To my knowledge, these two approaches have never been coupled
in studies of semiconductor transport!



Why do We Care?
Ø Ensemble Monte Carlo (EMC) techniques provide the most 

accurate approach to solving the Boltzmann equation, allowing 
one to focus on the physics of interactions, and letting the 
computer do the difficult bits

Ø Non-Equilibrium Green’s Functions (NEGF) have also been used 
to determine transport, but are difficult to implement and to 
evaluate (in fact, most approaches have serious errors*)

Ø NEGF is now being used by several software houses for 
semiconductor device simulation; it is slow and difficult!

*D. K. Ferry, J. Weinbub, M. Nedjalkov and S. Selberherr, “A review of quantum 
transport in field-effect transistors,” Semicond. Sci. Technol. 37, 043001 (2022)



What Do These Do?

Ø EMC techniques are particle-based techniques; the particles 
used in simulations are correlated with the electrons or holes

Ø NEGF approaches are based upon wave functions and their 
evolution in time.

Ø NEGF has not been associated with particle-based approaches 
(other than within the Feynman integral approach)

Ø However, the use of particles for quantum simulations have 
been known since the beginning (Madelung 1927, Kennard 
1928, Bohm 1950)



Non-Equilibrium Green’s Functions

The Green’s function approach is compute-intensive and has 
none of the computational simplicity ... of the detailed 
microscopic picture afforded by the ensemble Monte Carlo 
method.

J. R. Barker, J. Comp. Electron. 9, 243 (2010)



EMC Techniques are Assured from an Integral Equation

q The integral equation is developed from the Boltzmann equation 
and was developed by Kurosawa (1966), Budd (1967) and Rees 
(1972)

q This integral equation allows us to realize how to alternate the 
processes of drift and scattering to produce transport
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The distribution function at various times correlates with the 
ensemble of electrons used in the simulation :

𝒕 = 𝟎

intermediate time

final time
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Loss of information about the 
initial condition

Probability that carrier has not 
been scattered; drift time t-t’

Probability to scatter 
from k’ to k

The Transport Physics in Action



Particles in Quantum Transport

v As mentioned, particles have been suggested for quantum 
mechanics since the beginning: Madelung 1927, Kennard 
1928, Bohm 1950

v Even Feynman, with his path integral method, considered 
the “paths” to be those of particles (1948); attempts to use 
this for transport by Thornber and Feynman eventually 
used a QKE

v Nevertheless, there have been many approaches to put QM 
into EMC 



The problem lies with the very difficult, complicated equation that 
must eventually be solved for G<

Each product is a convolution integral in the double time, double 
space coordinates

A.-P. Jauho, Physica 134B, 148 (1985)
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v It has long been known that one can use any set of basis 
functions to solve the Schrödinger equation

v This allows one to chose a basis set that is suited to the 
problem at hand

v Most people have encountered Airy functions in their 
quantum mechanics course with a triangular potential well

v In a high electric field, Airy functions, or more properly the 
Airy transform, is best suited to the Schrödinger equation

v Here, the Airy transform will be used for the NEGFs



Airy Transforms
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The Airy transform of a function f(r,z) and some reduced 
parameters are given by:



What we need is the self-energy. The spectral density isn’t a Lorentzian 
due to the very nonlinear nature of the self energy
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Working through the math for G< allows us to find that the 
Kadanoff and Baym ansatz is satisfied, and that an integral 
equation can be found for the distribution function as
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Effective drift distance, or 
energy gain during the drift; 
velocity obtained from this 
𝚫𝑬

Scattering function arising from 𝜮*
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Test Case: Bulk Si at 300 K

v Two effective phonons: 1 high energy for optical intervalley 
modes and 1 mid energy for acoustic intervalley modes (Long, 
PR 120, 2024; Ferry, PRB 14, 605)

v The non-polar intervalley phonons are q-independent, which 
means that they are highly localized in real space, thus not 
expected to generate any correlations and high-order 
diagrams

v Analytic non-parabolic energy bands, 105 particles

v Field parallel to (111) direction so all valleys make same angle 
with the field
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C. Canali, C. Jacoboni, F. Nava, G. 
Ottaviani, and A. Alberigi-Quaranta, Phys. 
Rev. B 12, 2265 (1975)(100)

(111)



D. K. Ferry, Phys. Rev. B 14, 1605 (1976)

1 high-energy phonon, 0-order coupled

1 low-energy phonon, 1-order coupled



Effective drift distance, or 
energy gain during the drift; 
velocity obtained from this 
𝚫𝑬

Scattering function arising from 𝜮*
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Average drift distance as a function of electric field
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In non-parabolic bands, one connects time and space via

Then, velocity and momentum are determined in the usual 
manner
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Relative population as a function of energy



Considering Polar-Optical Modes

v This is a little more problematic—the polar modes are Coulomb 
fields and may entail long-range correlations; normally requiring 
two- and three-particle GFs and the Bethe-Salpeter equation for the 
latter

v On the other hand, optical mode scattering has “always” been 
assumed to be phase-breaking, which means the correlations would 
be broken up by the energy gain/loss in the scattering process.

v We don’t know whether this is true, as it has to be evaluated best in 
real space (see poster on this topic), but we assume it to be true 
here.



Phonon spectrum of III-V ZB Phonon Motion of III-V ZB



Band Structure of InN from two different approaches



Indium Nitride

Wurtzite unit cell Wurtzite phonon spectrum



Retarded Self-Energy for InN



Imaginary part of the less-
than self-energy for InN, 
arising from two polar 
optical modes (A1 and E1) 
and the acoustic mode.

The large decrease is a 
result of the nature of 
POP in quasi-two-
dimensions (normally 
seen in semi-classical 
approaches)



EMC Results for InN



Summary
v In conclusion, it appears that we have a particle approach that makes NEGF

more usable for modeling

v There is no reason this cannot be extended to full-band MC 

v A point of significant interest is that determining Gr, A, 𝚺!, G<, and f requires 
< 2.0 s per field point on my MacBook Pro with the M1 pro chip (this 
machine). That is a major advantage!

For further information and details:
D. K. Ferry, Semicond. Sci. Technol. 38 055005 (2023)
D. K. Ferry, Semicond. Sci. Technol. 38 075001 (2023)

Coming soon, to a bookstore near you:
D. K. Ferry, X. Oriols, and J. Weinbub, Quantum Transport in 
Semiconductor Devices: Simulation with Particles (IOP 
Publishing, in press)


