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Introduction

2D Materials
« TMD as channel material

« Limited by high:
« Schottky barriers
« Contact Resistance (R¢)

2D FET (ultimate body scaling)

[1]1Y. Liu, et al., “Promises and prospects of two-dimensional transistors,” Nature, 2021
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Image Force Barrier Lowering (IFBL)
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[2] Baliga, B.J., Springer (2019).
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How can we solve for IFBL?

« Method of Images!

For asymmetrical geometry?

+ Method-of images

« Poisson’s equation

l‘il— THE UNIVERSITY OF TEXAS AT DALLAS Materials Science and Engineering, Eric Johnson of Engineering and Computer Science 4



The Problem:

* |IFBL necessary to find R¢
* No solution for geometries like (b)

Dielectric . Metal 2D Material

() Q=T (b) Q = 3m/2
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Isolating The Image Potential (V)

[3] S. Evans, et al., “Image-Force Barrier Lowering for Two-Dimensional Materials:
Direct Determination and Method of Images on a Cone Manifold,” arXiv, 2023
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Determining Ujgg, from V,

To find Ugg, We solve:

e 1
UIFBL(?“, 9) = —/ gVI(TO,HO,ZOVF,@,Z’)dq — —56.
0

g = charge of electron
e = charge of the electron
inducing U,
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Isolating V, o )
- Find V with Poisson’s Equation: V(792 =5 /0 dk:Zi. (2) /0 daCak,Oa(8)Ra. ()
» Solve O(0) with 2 sets of boundary

conditions:
1. Point charge in free space (V¢) 2. Point charge near a metal wedge (V)
cosh(a(m — |60 — 6 sinh(af) cosh (a(m — (2 — 6
Ocia(0:00) =[= <oz(sinh(|oz7r) o) (03 60) = ( aiinh(agr)<sinh((ozﬂ) O)))
B oo +simh(oz(Q —0)) cosh (a(r — 6p))
j ;g%zzg a sinh(am) sinh(af?)
% 0 Egiggg; cosh(a(m — |0 — 6y)))

l " asinh(an)
3 O o

3 2 1 0 -1 -2 -3
z (nm)
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Results: IFBL Potential Energy

—e? [ sinh(af) cosh(a(m — (2 —0)))  sinh(a(2 — 0)) cosh(a(r — 0))
UrepL(r.0) = 87‘(‘67“/0 da( sinh(af?) cosh(a) i sinh(a€?) cosh(ar) )
—0.016
—0.168
—0.320
—0.472 &°
—0.624 =
—0.776 =
—0.928 g
—1.080 =
—1.232
—1.384
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Method of Images on a Cone Manifold

Previously | said that | can not solve asymmetrical problems using method of images...

[ LIED!
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Method of Images on a Cone Manifold
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Method of Images on a Cone Manifold (cont.)

« We can now easily place an image charge,
regardless of asymmetrical geometry

* Results are equal through trig identities

I i cosh(a (2 —n))sinh(am) cosh(ot(Q—26))sinh(azw) cosh(a(m—n))
UirsL(r, 0) = STEr /o da( sinh(aQ)cosh(amw)  sinh(aQ)cosh(am)  cosh(ax) )
=€ - sinh(a(Q — 7)) cosh(a(Q 29))tanh(a7t)
Urrp(r,6) = 8mer (/ do sinh(Q) cosh(a) / = sinh(aQ) )
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Results: Ujeg.

Q ) UIFBL/(—eZ/(l67t£r))

a| m m/2 1

b| =w 0 csc(0)
c| 2m T 0.63
d\3n/2| & (orm/2) 0.85
el|dmn/3 s [1.11]
fl| 2m 3n/2 0.82
g|3n/2|Q/2=3n/4 0.74
h|4an/3|Q/2 =27/3 0.81
i2n/3| Q/2=mn/3 1.41
jlm/2|Q2=mn/4 1.83
k| m/3 | Q/2=m/6 2.69

(h) ' 0) (k)
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Results: Contact Resistance ~ sxw'fg -
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Conclusions

« IFBL necessary for accurate R calculation
« But significantly impacted by contact geometry

* U,z determined for asymmetrical geometries:
» Poisson’s equation
« Cone manifold

1
* Uippy, X -

« Contact angle can act as tunable parameter
* Impacts Schottky barrier and R
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Thank you!

Please feel free to ask any questions

S. Evans, et al., “Image-Force Barrier Lowering for Two-Dimensional Materials: Direct Determination and Method of
Images on a Cone Manifold,” arXiv, 2023



Future work

.Metal

Dielectric 1, g, Dielectric 2, ¢, 2D Material

1 'Ql

/
() Q=T (b) Q = 31/2 (©)
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- 1 0 R
UrppL(r, 0) = —/ gVI(TO,HO,20;7“,9,:5)(161 = —56‘/1 (1) Vie_—° / doPy_1 ((Z z0)” + g+ ) (4)
" 0

e dme/TT0 2r7)
. sinh(af)cosh (a(m — (22— 6y))) o) sinh(af) cosh (a(m — (2 — 6y)))
Ora(0;00) = a sinh(ar) sinh(aQ) ( ) ( sinh(af?) cosh(a)
+sinh(a(ﬂ —6)) cosh (a(r — 6y)) 4_311111(04@2 — 0)) cosh (a(m — 90)))
a sinh(am) sinh(af?) sinh(af2) cosh(an)
o« cosh(a(m — [0 — b)) 3 o  cosh(a(Q—|60—6))
Ocia(f;00) = - a sinh(am) : ( ) 68“(9’90) N asinh(aQ) (6)
—e? [ sinh(af) cosh(a(r — (2 —0)))  sinh(a(2 — 0)) cosh(a(r — 0))
UrepL (1 0) = 8mer /0 da( sinh(af?) cosh(am) * sinh(af?) cosh(am) ) (5)

) — —e? [ | cosh(a(Q2 — 26))sinh(an) + sinh(a (2 — 7))
Ve (r,) 8mer /0 da sinh(a{2) cosh(am) (7)
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