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“Unveiling quantum phase transition by       
disorder and defects in 2D-materials: 
Jacutingaite family”

@   Jacu'ngaite-family : A class of 
topological materials

@ Topological insulating phase arising in 
Jacutingaite- family ordered and random 
alloys.

@ Vacancies – driven Quantum Spin Hall on 
transition metal dichalcogenides.
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Topological Insulators are called ‘‘topological’’ because the wave 
functions describing their electronic states span a Hilbert space that 
has a nontrivial topology… they opened a new window for understanding 
the elaborate workings of nature. 

Consequence?... a gapless interface state necessarily shows 
up when the insulator is physically terminated and faces an ordinary 
insulator (including the vacuum). 

Which invariant? 

8

tates within a Kramers degenerate pair is forbidden due
to the protection from time-reversal symmetry [39]. How-
ever, backscattering between states in different Kramers
degenerate pairs is allowed, making them annihilate to-
gether. Therefore, the system will become a trivial insu-
lator if there is an even number of Kramers degenerate
pairs at each boundary and the topologically nontrivial
phase occurs only when the number of Kramers degen-
erate pair is odd, hence the name “topological insulator”
coined by Kane and Mele [24]. Such a property intrin-
sically classifies the time-reversal symmetric insulators
into two classes, characterized by the Z2 topological in-
variant [24]:

Z2 =
1

2π

[∮

∂ HBZ
dk ·A(k)−

∫

HBZ
d2kΩz(k)

]
mod(2).

(7)
The presence of the mod(2) term makes the topological
invariant can only take two values “0” and “1” indicating
topologically trivial and nontrivial respectively, which re-
flects the binary classification of insulator with even or
odd numbers of Kramers pairs. In addition, there are
other definitions of the Z2 topological indices, which have
been well described in Refs. [98] and [99]. For clarity and
correctness of the definitions, hereinbelow, we refer to the
QSHE as a “2D Z2 topological insulator (2D Z2 TI)” no
matter whether the spin is a good quantum number or
not.
Although the Kane-Mele model was shown to be able

to open up a topologically nontrivial gap that can host
a 2D Z2 TI phase, the intrinsic spin-orbit coupling is ex-
tremely weak that makes the realization of 2D Z2 TI in
the pristine graphene impossible [25–29]. Nevertheless,
intensive studies have shown that the intrinsic spin-orbit
coupling of graphene can be greatly enhanced via exter-
nal means, e.g. by adsorbing some heavy atoms, and a
variety of graphene-like materials (e.g. low-buckled hon-
eycomb lattice systems) can naturally possess stronger
intrinsic spin-orbit couplings as reviewed in the following
sections.

2. Low-buckled honeycomb lattice

The Kane-Mele model can also be applied to the low-
buckled honeycomb-lattice structures of other group-IV
element based 2D atomic crystal layers, e.g. silicene [100–
103], germanene [100, 104], and stanene [32], which are
the respective counterparts of silicone, germanium, and
tin. Similar structures exist in the 2D alloys of these ele-
ments [100, 105, 106]. The low-buckled honeycomb struc-
ture originates from the larger interatomic distances in
these systems [31, 107] and makes the atomic orbitals mix
the sp3 hybridization with the sp2 one, which results in a
first-order contribution of the atomic spin-orbit coupling
to the intrinsic spin-orbit coupling of the Bloch electrons
[see Fig. 7(c)]. Because of the higher atomic numbers of
Si, Ge, and Sn, their larger intrinsic spin-orbit coupling

induced bulk gaps can reach the orders of 1, 10, and 100
meV, respectively, making the Z2 TIs measurable under
experimentally achievable temperatures [31, 32, 104]. In
addition, although the low-buckled structure naturally
breaks the mirror symmetry about the plane leading to
an intrinsic Rashba-type spin-orbit coupling, this is not
detrimental to the 2D Z2 TIs since the intrinsic Rashba
spin-orbit coupling is momentum-dependent and vanish-
es at the Dirac K/K′ points [31]. Another striking prop-
erty of the low-buckled structure is the external tunabil-
ity when an electric field [108–111] or strain [112, 113] is
applied.

3. Multilayer graphene

Although the Bernal-stacked multilayer graphene is al-
so a zero-gap semi-metal, the interlayer coupling modifies
the linear Dirac dispersion at valleys KK′ of the mono-
layer graphene to become non-linear in the multilayer
case [114]. We begin with bilayer graphene as an ex-
ample that has quadratic bands touching at K and K′

points as displayed in Fig. 2(a), which gives rise to a d-
ifferent pseudospin texture from that of the monolayer
graphene of Fig. 2(b) [115]. In the presence of intrin-
sic spin-orbit coupling, even though either top or bottom
layer can form a separate TI, the interlayer coupling in-
duced combination of these two TIs gives rise to a trivial
insulator [67, 116]. However, it is found that the extrin-
sic Rashba spin-orbit coupling due to the breaking of the
mirror reflection symmetry z → −z by, e.g. applying a
perpendicular electric field [45], adsorbing atoms [117],
or placing on top of a metallic substrate [117–119], can
induce a Z2 TI assisted by the interlayer potential dif-
ference [53, 120]. Such a TI phase can be understood in
two limits as described in the following.

When the Rashba spin-orbit coupling λR is much larger
than the interlayer potential difference U , the low-energy
continuum model Hamiltonian can be expressed as

Heff
K =

1

λR





UλR iv2(π†)2 0 2it⊥vπ†

−iv2π2 UλR 0 0
0 0 −UλR iv2(π†)2

−2it⊥vπ 0 −iv2π2 −UλR



 ,

(8)

where the basis functions are mainly decided by {A1↑,
B1↓, A2↑, B2↓} [120]. In the absence of a perpendicu-
lar electric field, the strong Rashba spin-orbit coupling
lifts the spin degeneracy of the bands in the K and K′

valleys by mixing the upward and downward spins as
well as the layer pseudospin. However, the gapless char-
acter is preserved leading to both linear and quadrat-
ic band touching, which can be lifted by either a Zee-
man term or an inequivalent layer potential resulting in
a QAHE [see Sec. III] or TI [120]. The weak inequiva-
lent layer potential lifts both linear and quadratic band
touching and gives rise to a Chern number at valley K
CK = sgn(U), mainly attributed to the gapped linear
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Berry connection: Berry curvature

(Time Reversal invariant)

Isolantes topológicos Z2 = 1
Isolantes triviais Z2 =0



Why Jacutingaite-family ?

New candidates for topological materials:
(i) large topological gap.
(ii) structural stability.
(iii) accessible synthesis route.



@ Pt2HgSe3 is a naturally occurring mineral 
discovered in Brazil in 2008. 

@ In 3D-form is predict a dual topology , weak topological 
insulator and topological crystaline insulator.

@ Its monolayer form, a place for manifestation of the 
Kane-Mele topological phase

@ Also Pt2HgSe3 has been synthesized and also Pd-
based in the same structure Pd2HgSe3.



One of the largest mining 
companies in the world -
Vale do Rio Doce2008

BRAZILIAN TOPOLOGICAL!!!

Pt2HgSe3



@ Pt2HgSe3 is a naturally occurring mineral 
discovered in Brazil in 2008. 

@ In 3D-form is predict a dual topology , weak topological 
insulator and topological crystaline insulator.

@ its monolayer form, a place for manifestation of the 
Kane-Mele topological phase

@ Also Pt2HgSe3 has been synthesized and also Pd-
based in the same structure Pd2HgSe3.



PRL 2018

First theoretical paper

Its atomic structure can be viewed as a the transition metal 
dichalcogenide (TMD) PtSe2 with a structural phase where ¼ 
of the chalcogenides are replaced by Hg.

its monolayer(2D) form, a place for 
manifestation of the Kane-Mele topological 
phase. Whereas in 3D-form is predict a dual 
topology , weak topological insulator and 
topological crystaline insulator.



Signature of Large-Gap Quantum Spin Hall State in the Layered
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ABSTRACT: Quantum spin Hall (QSH) insulators host edge states,
where the helical locking of spin and momentum suppresses
backscattering of charge carriers, promising applications from low-
power electronics to quantum computing. A major challenge for
applications is the identification of large gap QSH materials, which
would enable room temperature dissipationless transport in their edge
states. Here we show that the layered mineral jacutingaite (Pt2HgSe3)
is a candidate QSH material, realizing the long sought-after Kane−
Mele insulator. Using scanning tunneling microscopy, we measure a
band gap in excess of 100 meV and identify the hallmark edge states.
By calculating the =2 invariant, we confirm the topological nature of
the gap. Jacutingaite is stable in air, and we demonstrate exfoliation
down to at least two layers and show that it can be integrated into
heterostructures with other two-dimensional materials. This adds a topological insulator to the 2D quantum material library.
KEYWORDS: Topological insulator, Low-dimensional materials, Quantum spin Hall effect (QSH),
Scanning tunneling microscopy (STM)

The QSH state1,2 has first been realized experimentally, at
cryogenic temperatures, in HgTe quantum wells.3

Interestingly, the prototype QSH insulator is actually graphene,
when it was realized by Kane and Mele that its Dirac
quasiparticles are gapped and characterized by a =2 topological
invariant if spin orbit coupling (SOC) is considered.4,5

However, the low SOC in graphene results in a gap of only
a few μeV, making its topological properties a mere theoretical
curiosity. To realize a Kane−Mele insulator, a material is
needed with the honeycomb lattice of graphene, but having
large SOC.4 In the past few years there has been a tremendous
effort to find a layered material conforming to these
requirements. From the point of view of applications, the
candidate material forming this “heavy metal graphene”, should
ideally have the following characteristics. It should have a
topological gap above room temperature, to enable room
temperature dissipationless charge transport. The van der
Waals bonding between the layers of the material should be
weak enough6 to enable exfoliation by the well-known
methods developed for 2D materials. This would enable
integration into heterostructures with the vast numbers of
other 2D quantum materials discovered to date.7,8 Such a
combination with other 2D materials can enable a high degree
of control over the edge states.7 For example, in proximity with
2D superconductors, Majorana quasiparticles could be

formed.9 Lastly, it should be stable in air under ambient
conditions, making the material widely usable.
One possibility to realize a QSH system, is to increase the

SOC in graphene by placing it in proximity to materials with a
large atomic number,10−12 either with adatoms13,14 or in a
substrate.15−17 The resulting SOC induced gap is on the order
of 10 meV at best. An alternative is to find a material with an
intrinsically large topological gap,18 such as a bismuth
honeycomb layer on SiC,19,20 with a band gap of 0.8 eV.
However, the crystal structure and therefore the topological
properties of this bismuthene are linked to the SiC support,
limiting its applicability. Similar constraints arise in the case of
stanene21 and other group IV honeycomb layers and perhaps
for bismuth (111) bilayers.22,23

Among materials that exist as freestanding single layers, the
1T′ phase of transition metal dichalcogenides are predicted to
be QSH insulators.24 For MoS2, WSe2, and WTe2 the hallmark
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Bulk and Surface Electronic Structure of the Dual-Topology Semimetal Pt2HgSe3
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We report high-resolution angle-resolved photoemission measurements on single crystals of Pt2HgSe3
grown by high-pressure synthesis. Our data reveal a gapped Dirac nodal line whose (001) projection
separates the surface Brillouin zone in topological and trivial areas. In the nontrivial k-space range, we find
surface states with multiple saddle points in the dispersion, resulting in two van Hove singularities in the
surface density of states. Based on density-functional theory calculations, we identify these surface states as
signatures of a topological crystalline state, which coexists with a weak topological phase.

DOI: 10.1103/PhysRevLett.124.106402

The prediction of the quantum spin Hall effect in
graphene by Kane and Mele triggered a reformulation of
band theory incorporating the concept of topology [1,2].
Demonstrated first in HgTe=CdTe quantum well structures
[3,4], a quantum spin Hall state has subsequently been
identified in exfoliated 1T 0 WTe2 [5–8] and was reported in
bismuthene grown on SiC [9]. Recently, a robust quantum
spin Hall insulator (QSHI) with a gap of up to 0.5 eV has
also been predicted in monolayer (ML) Pt2HgSe3 [10],
raising the possibility of a highly insulating state up to
room temperature in a van der Waals material.
When stacked to form a three-dimensional (3D) crystal,

a 2D QSHI generically turns into a weak topological
insulator (WTI) with no protected states on the top and
bottom surface of the crystal [11]. Intriguingly though,
recent theoretical work found a far richer scenario for bulk
Pt2HgSe3. References [12,13] predicted that Pt2HgSe3 is
one of only a few known dual-topological insulators and
may host different surface states protected by symmetries
that are unrelated to the QSHI state [14–17]. Specifically,
Pt2HgSe3 was found to be a topological crystalline insu-
lator (TCI) arising from a threefold mirror symmetry, in
addition to a weak topological insulator protected by the
preservation of translational symmetry in the stacking of
the layers. However, to date little is known from experiment
about the bulk band structure supporting the different
topological phases of Pt2HgSe3 [18] and the key signature
of the TCI, a topological surface state on the (001) surface,
has not been reported.
Here we present an angle-resolved photoemission

(ARPES) study of cleaved bulk Pt2HgSe3 single crystals.

We experimentally observe a spin-split surface state with
multiple saddle point singularities on the (001) surface and
show how this state emerges from a nodal line gapped by
spin-orbit interactions. Based on first principles calcula-
tions, we identify this surface state as the signature of a TCI
phase coexisting with the generic WTI phase found in the
same calculations. Our Letter thus provides evidence for
the dual topology of Pt2HgSe3.
We start by describing the growth of jacutingaite

Pt2HgSe3 single crystals. Since Hg is highly volatile, we
employed a high-pressure synthesis route using a high-
temperature cubic-anvil press. Applying pressure in the
gigapascal range prevents Hg from boiling off and allowed
us to stabilize a stoichiometric melt at temperatures as
high as 900–1000 °C. Elemental Pt (purity 99.98%) and Se
(purity 99.999%), and the compound HgSe (purity 99.9%),
were thoroughly mixed with a Hg-exceeding nominal
composition Pt2Hg1.1Se3 and pelletized under Ar atmos-
phere inside a glovebox. The pellet was inserted in a boron
nitride crucible surrounded by a graphite heater that tightly
filled the pyrophillite pressure cell [Fig. 1(a)]. The cell
was first pressurized to 1.5–2 GPa, then heated at a fast
rate to the target temperature 850–1000 °C, maintained at
high temperature for 1–2 h then slowly cooled down
(50–75 °C=h) to 650 °C followed by a quench to room
temperature. Crystalline platelets forming inside the solidi-
fied pellet could then be extracted mechanically [Figs. 1(b)
and 1(c)]. The crystal sizes obtained by this procedure
were in the range of 0.5–1 mm in the lateral dimension
and 50–100 μm in thickness. Crystals were found to
have a trigonal unit cell (space group P3̄m1) with lattice
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Pressure-induced superconductivity and structure phase
transition in Pt2HgSe3
Cuiying Pei 1,8, Suhua Jin1,8, Peihao Huang2,8, Anna Vymazalova3, Lingling Gao 1, Yi Zhao 1, Weizheng Cao 1, Changhua Li1,
Peter Nemes-Incze 4, Yulin Chen 1,5,6, Hanyu Liu 2,7✉, Gang Li 1,5✉ and Yanpeng Qi 1✉

Recently monolayer jacutingaite (Pt2HgSe3), a naturally occurring exfoliable mineral, discovered in Brazil in 2008, has been
theoretically predicted as a candidate quantum spin Hall system with a 0.5 eV band gap, while the bulk form is one of only a few
known dual-topological insulators that may host different surface states protected by symmetries. In this work, we systematically
investigate both structure and electronic evolution of bulk Pt2HgSe3 under high pressure up to 96 GPa. The nontrivial topology is
theoretically stable, and persists up to the structural phase transition observed in the high-pressure regime. Interestingly, we found
that this phase transition is accompanied by the appearance of superconductivity at around 55 GPa and the critical transition
temperature Tc increases with applied pressure. Our results demonstrate that Pt2HgSe3 with nontrivial topology of electronic states
displays a ground state upon compression and raises potentials in application to the next-generation spintronic devices.

npj Quantum Materials �����������(2021)�6:98� ; https://doi.org/10.1038/s41535-021-00402-w

INTRODUCTION
Quantum spin Hall insulators (QSHIs) constitute an important class
of topological systems having a gapped insulating bulk and
gapless helical edge states. Importantly, helical edge states, where
the helical locking of spin and momentum suppresses back-
scattering of charge carriers, are robust against interactions and
nonmagnetic disorders, making QSHIs possess promising applica-
tions from low power electronics to quantum computing1–9. After
the first experimental realization of a QSHI in the form of a HgTe/
CdTe quantum well at cryogenic temperatures4,10, a quantum spin
Hall state has subsequently been identified in exfoliated 1T′ phase
of transition metal dichalcogenides (e.g., WTe2) by scanning
tunneling microscopy11 and charge transport measurements12.
Despite their massive fundamental interest and their prospective
technological applications, a major challenge is the identification
of large gap QSHI materials, which would enable room
temperature dissipationless transport of their edge states.
Recently, a robust QSHI with a gap of up to 0.5 eV, which is one

order of magnitude larger than that in WTe2, has also been
predicted in monolayer Pt2HgSe313. The ternary compound
Pt2HgSe3, so called Jacutingaite14–20, has a “sandwich-like”
structure reminiscent of transition metal dichalcogenides, with a
platinum layer between selenium and mercury. In the case of the
monolayer, it was argued that the competition between large
spin-orbit coupling, associated with Hg and Pt atoms, and
sublattice symmetry breaking leads to a QSHI state robust at
room temperature and switchable by external electric fields13.
Furthermore, recent theoretical work found that bulk Pt2HgSe3 is
one of only a few known dual-topological semimetals and may
host different surface states protected by symmetries that are
unrelated to the QSHI state21–23.
Specifically, Wu et al. predicted that the monolayer of Pt2HgSe3

hosts different phases of unconventional superconductivity for

finite hole and electron doping24. High pressure can effectively
modify lattice structures and the corresponding electronic states in
a systematic fashion25–27. Indeed, superconductivity has been
induced by the use of pressure in some topological com-
pounds27–34. Here, we systematically investigate the high-pressure
behavior of bulk Pt2HgSe3. Through ab initio band structure
calculations, we find that the application of pressure does not
qualitatively change the electronic and topological nature of the
material until the structural phase transition is observed in the high-
pressure regime. Interestingly, superconductivity appears beyond
the structural phase transition and the maximum critical tempera-
ture, Tc, of 4.4 K at 88.8 GPa is observed. The results demonstrate
that Pt2HgSe3 compounds with nontrivial topology of electronic
states display a ground states upon compression.

RESULTS AND DISCUSSION
Crystal structure and electronic properties of Pt2HgSe3
Jacutingaite (Pt2HgSe3) is a layered platinum-group mineral, which
has a centrosymmetric trigonal structure, belonging to the space
group P3m1 (No.164). As shown in Fig. 1a, b, Hg atoms form a
buckled honeycomb lattice surrounded by triangles of Pt and Se.
There are two inequivalent platinum positions indicated by Pt1
and Pt2. The Pt1 atoms show an octahedral coordination with six
selenium atoms, while Pt2 are surrounded by two mercury atoms
in a trans position with respect to one another and four selenium
atoms in a square planar coordination. The Pt1 and Pt2 octahedra
are Se-Se edges shared and form layers oriented parallel to (001),
which is further AA-type stacking along the c axis. The P3m1 phase
is known to be topological at ambient pressure. In our ab initio
calculations, we found that, at all pressured studied in this work,
Pt2HgSe3 remains topological with the location of topological
surface states being slightly modified. The details of the bulk,
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FIG. 1. (a) 2D TMD (MX2) and 2D and 3D M2NX3 atomic struc-
ture, (b) lattice parameter, (c) bucking distance, (d) formation energy
comparison between the TMD and M2NX3, (e) ternary MNX energy
above hull for M2NX3, (f) convex hull for Pd2HgSe3, and (g) cleavage
energy with the dashed line indicating the graphite cleavage barrier.

are rotated by 60◦ with respect to each other, giving rise to
a buckled hexagonal lattice. At the equilibrium geometry, the
lattice constants of the M2NX3 structures are practically inde-
pendent of the transition metal, i.e., nearly the same as those of
the hosts (MX2). For instance, the equilibrium lattice constants
of Pt2NSe3, for N = Zn, Cd, and Hg, differ by less than 0.9%,
compared with that of 1T PtSe2. Such independence is due to
the N−M−N buckled structure [Fig. 1(a)] acting as a source
of strain relief induced by the foreign (N) atom. As shown
in Fig. 1(c), the vertical buckling (dz) of the N−M−N bonds
presents larger (lower) values for X = S (Te).

The energetic stability of the jacutingaitelike structures can
be examined by comparing the formation energy of M2NX3
with the one of its respective (energetically stable) MX2 host,
!TMD = "[M2NX 3] − "[MX2] [Fig. 1(d)]. Here the forma-
tion energy is given by a total energy difference between the
compound x final system (E [x]) and the upper limit of the

chemical potentials of its isolated compounds (µbulk), namely,

"[x] = E [x] −
∑

i

niµ
bulk
i ,

where ni indicates its number of atoms of the species i = M,
N , and X . Our !TMD results reveal that the jacutingaitelike
structures are quite likely to occur for X = Se and Te. Here,
we found negative values of !TMD for the former, while for
X = Te it increases by less than 0.1 eV/atom [Fig. 1(d)].
Meanwhile, for X = S the M2NX3 structure is less stable than
that of its host by about 0.4 eV/atom.

Further structural stability of the jacutingaitelike M2NX3
structures has been examined through convex energy hull
analysis, comparing their formation energies (") with other
MNX ternary phases extracted from the Materials Project
database [43,46,47]. We found M2NX3 compounds being a
node point in the convex hull (zero energy above the convex
hull, Ea-h = 0.0 eV/atom [35]) showing its experimental sta-
bility [Fig. 1(e)]. For instance, in Fig. 1(f), Pd2HgSe3 lies in
a convex node with a formation energy of −0.18 eV/atom.
Additionally, all M2HgSe3 (M = Ni, Pd, and Pt) have Ea-h =
0.0, as well as Pd2HgTe3, Pt2CdTe3, and Pt2HgTe3. For the
Se- and Te-based materials that have nonzero energy above
the hull we found Ea-h < 0.18 eV/atom, which indicates its
high stability [48]. For instance, taking Pt2ZnTe3 as a case of
study (Ea-h = 0.08 eV/atom), we have calculated its mono-
layer phonon dispersion [35], where its dynamical stability
was confirmed by the absence of negative frequencies. Addi-
tionally, for the higher Ea-h systems, X = S-based compounds,
their negative values of formation energies, " < 0 [35], in-
dicate that they can be experimentally stabilized throughout
specific synthesis routes and/or substrate support. Although
the SOC has a stabilizing role in the jacutingaite phonon
dispersion [26], we see that it changes the formation energy
by ∼7 meV/atom, which does not change our conclusions.

The cleavage energy (δ) [49] is another important piece of
structural information for the top-down synthesis of 2D sys-
tems. We found that the M2NX3 bulk phase presents cleavage
energies in the range of other experimentally exfoliated ma-
terials [50]. For instance, jacutingaite has a cleavage energy,
δ = 0.46 J/m2 comparable with that of graphene exfoliated
from graphite, δ = 0.39 J/m2 [dashed line in Fig. 1(g)] [51].
When we compare the calculated cleavage energy and the
vertical buckling of the N−M−N bonds [dz in Fig. 1(c)], it
is noticeable that (i) for a given transition metal pair M-N the
δ is proportional to dz, being larger for X = S and lower for
X = Te, this is in agreement with Ref. [32], where the authors
verified that the N atoms are responsible for the interplane
bound of the M2NX3 system, as shown in Fig. 1(a) for the
M2NX3 3D structure. Indeed, taking the Cd and Hg systems,
which have a similar bucking distance, the former presents
a stronger interlayer bond ruled by the bonding energy of
Cd-X being ∼60% greater than that of Hg-X . By contrast, for
Zn, given its lower buckling distance, an interplay between
the van der Waals interaction (of the TMD host) and the Zn
interlayer chemical bond is present. The former dominates for
lower dz, leading to a weaker interlayer bond. (ii) For X = Te
and N = Zn, the cleavage energy is always lower than that
of graphene, where (iii) the cleavage energy of Pt2HgTe3 is
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FIG. 1. (a) 2D TMD (MX2) and 2D and 3D M2NX3 atomic struc-
ture, (b) lattice parameter, (c) bucking distance, (d) formation energy
comparison between the TMD and M2NX3, (e) ternary MNX energy
above hull for M2NX3, (f) convex hull for Pd2HgSe3, and (g) cleavage
energy with the dashed line indicating the graphite cleavage barrier.

are rotated by 60◦ with respect to each other, giving rise to
a buckled hexagonal lattice. At the equilibrium geometry, the
lattice constants of the M2NX3 structures are practically inde-
pendent of the transition metal, i.e., nearly the same as those of
the hosts (MX2). For instance, the equilibrium lattice constants
of Pt2NSe3, for N = Zn, Cd, and Hg, differ by less than 0.9%,
compared with that of 1T PtSe2. Such independence is due to
the N−M−N buckled structure [Fig. 1(a)] acting as a source
of strain relief induced by the foreign (N) atom. As shown
in Fig. 1(c), the vertical buckling (dz) of the N−M−N bonds
presents larger (lower) values for X = S (Te).

The energetic stability of the jacutingaitelike structures can
be examined by comparing the formation energy of M2NX3
with the one of its respective (energetically stable) MX2 host,
!TMD = "[M2NX 3] − "[MX2] [Fig. 1(d)]. Here the forma-
tion energy is given by a total energy difference between the
compound x final system (E [x]) and the upper limit of the

chemical potentials of its isolated compounds (µbulk), namely,

"[x] = E [x] −
∑

i

niµ
bulk
i ,

where ni indicates its number of atoms of the species i = M,
N , and X . Our !TMD results reveal that the jacutingaitelike
structures are quite likely to occur for X = Se and Te. Here,
we found negative values of !TMD for the former, while for
X = Te it increases by less than 0.1 eV/atom [Fig. 1(d)].
Meanwhile, for X = S the M2NX3 structure is less stable than
that of its host by about 0.4 eV/atom.

Further structural stability of the jacutingaitelike M2NX3
structures has been examined through convex energy hull
analysis, comparing their formation energies (") with other
MNX ternary phases extracted from the Materials Project
database [43,46,47]. We found M2NX3 compounds being a
node point in the convex hull (zero energy above the convex
hull, Ea-h = 0.0 eV/atom [35]) showing its experimental sta-
bility [Fig. 1(e)]. For instance, in Fig. 1(f), Pd2HgSe3 lies in
a convex node with a formation energy of −0.18 eV/atom.
Additionally, all M2HgSe3 (M = Ni, Pd, and Pt) have Ea-h =
0.0, as well as Pd2HgTe3, Pt2CdTe3, and Pt2HgTe3. For the
Se- and Te-based materials that have nonzero energy above
the hull we found Ea-h < 0.18 eV/atom, which indicates its
high stability [48]. For instance, taking Pt2ZnTe3 as a case of
study (Ea-h = 0.08 eV/atom), we have calculated its mono-
layer phonon dispersion [35], where its dynamical stability
was confirmed by the absence of negative frequencies. Addi-
tionally, for the higher Ea-h systems, X = S-based compounds,
their negative values of formation energies, " < 0 [35], in-
dicate that they can be experimentally stabilized throughout
specific synthesis routes and/or substrate support. Although
the SOC has a stabilizing role in the jacutingaite phonon
dispersion [26], we see that it changes the formation energy
by ∼7 meV/atom, which does not change our conclusions.

The cleavage energy (δ) [49] is another important piece of
structural information for the top-down synthesis of 2D sys-
tems. We found that the M2NX3 bulk phase presents cleavage
energies in the range of other experimentally exfoliated ma-
terials [50]. For instance, jacutingaite has a cleavage energy,
δ = 0.46 J/m2 comparable with that of graphene exfoliated
from graphite, δ = 0.39 J/m2 [dashed line in Fig. 1(g)] [51].
When we compare the calculated cleavage energy and the
vertical buckling of the N−M−N bonds [dz in Fig. 1(c)], it
is noticeable that (i) for a given transition metal pair M-N the
δ is proportional to dz, being larger for X = S and lower for
X = Te, this is in agreement with Ref. [32], where the authors
verified that the N atoms are responsible for the interplane
bound of the M2NX3 system, as shown in Fig. 1(a) for the
M2NX3 3D structure. Indeed, taking the Cd and Hg systems,
which have a similar bucking distance, the former presents
a stronger interlayer bond ruled by the bonding energy of
Cd-X being ∼60% greater than that of Hg-X . By contrast, for
Zn, given its lower buckling distance, an interplay between
the van der Waals interaction (of the TMD host) and the Zn
interlayer chemical bond is present. The former dominates for
lower dz, leading to a weaker interlayer bond. (ii) For X = Te
and N = Zn, the cleavage energy is always lower than that
of graphene, where (iii) the cleavage energy of Pt2HgTe3 is
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FIG. 1. (a) 2D TMD (MX2) and 2D and 3D M2NX3 atomic struc-
ture, (b) lattice parameter, (c) bucking distance, (d) formation energy
comparison between the TMD and M2NX3, (e) ternary MNX energy
above hull for M2NX3, (f) convex hull for Pd2HgSe3, and (g) cleavage
energy with the dashed line indicating the graphite cleavage barrier.

are rotated by 60◦ with respect to each other, giving rise to
a buckled hexagonal lattice. At the equilibrium geometry, the
lattice constants of the M2NX3 structures are practically inde-
pendent of the transition metal, i.e., nearly the same as those of
the hosts (MX2). For instance, the equilibrium lattice constants
of Pt2NSe3, for N = Zn, Cd, and Hg, differ by less than 0.9%,
compared with that of 1T PtSe2. Such independence is due to
the N−M−N buckled structure [Fig. 1(a)] acting as a source
of strain relief induced by the foreign (N) atom. As shown
in Fig. 1(c), the vertical buckling (dz) of the N−M−N bonds
presents larger (lower) values for X = S (Te).

The energetic stability of the jacutingaitelike structures can
be examined by comparing the formation energy of M2NX3
with the one of its respective (energetically stable) MX2 host,
!TMD = "[M2NX 3] − "[MX2] [Fig. 1(d)]. Here the forma-
tion energy is given by a total energy difference between the
compound x final system (E [x]) and the upper limit of the

chemical potentials of its isolated compounds (µbulk), namely,

"[x] = E [x] −
∑

i

niµ
bulk
i ,

where ni indicates its number of atoms of the species i = M,
N , and X . Our !TMD results reveal that the jacutingaitelike
structures are quite likely to occur for X = Se and Te. Here,
we found negative values of !TMD for the former, while for
X = Te it increases by less than 0.1 eV/atom [Fig. 1(d)].
Meanwhile, for X = S the M2NX3 structure is less stable than
that of its host by about 0.4 eV/atom.

Further structural stability of the jacutingaitelike M2NX3
structures has been examined through convex energy hull
analysis, comparing their formation energies (") with other
MNX ternary phases extracted from the Materials Project
database [43,46,47]. We found M2NX3 compounds being a
node point in the convex hull (zero energy above the convex
hull, Ea-h = 0.0 eV/atom [35]) showing its experimental sta-
bility [Fig. 1(e)]. For instance, in Fig. 1(f), Pd2HgSe3 lies in
a convex node with a formation energy of −0.18 eV/atom.
Additionally, all M2HgSe3 (M = Ni, Pd, and Pt) have Ea-h =
0.0, as well as Pd2HgTe3, Pt2CdTe3, and Pt2HgTe3. For the
Se- and Te-based materials that have nonzero energy above
the hull we found Ea-h < 0.18 eV/atom, which indicates its
high stability [48]. For instance, taking Pt2ZnTe3 as a case of
study (Ea-h = 0.08 eV/atom), we have calculated its mono-
layer phonon dispersion [35], where its dynamical stability
was confirmed by the absence of negative frequencies. Addi-
tionally, for the higher Ea-h systems, X = S-based compounds,
their negative values of formation energies, " < 0 [35], in-
dicate that they can be experimentally stabilized throughout
specific synthesis routes and/or substrate support. Although
the SOC has a stabilizing role in the jacutingaite phonon
dispersion [26], we see that it changes the formation energy
by ∼7 meV/atom, which does not change our conclusions.

The cleavage energy (δ) [49] is another important piece of
structural information for the top-down synthesis of 2D sys-
tems. We found that the M2NX3 bulk phase presents cleavage
energies in the range of other experimentally exfoliated ma-
terials [50]. For instance, jacutingaite has a cleavage energy,
δ = 0.46 J/m2 comparable with that of graphene exfoliated
from graphite, δ = 0.39 J/m2 [dashed line in Fig. 1(g)] [51].
When we compare the calculated cleavage energy and the
vertical buckling of the N−M−N bonds [dz in Fig. 1(c)], it
is noticeable that (i) for a given transition metal pair M-N the
δ is proportional to dz, being larger for X = S and lower for
X = Te, this is in agreement with Ref. [32], where the authors
verified that the N atoms are responsible for the interplane
bound of the M2NX3 system, as shown in Fig. 1(a) for the
M2NX3 3D structure. Indeed, taking the Cd and Hg systems,
which have a similar bucking distance, the former presents
a stronger interlayer bond ruled by the bonding energy of
Cd-X being ∼60% greater than that of Hg-X . By contrast, for
Zn, given its lower buckling distance, an interplay between
the van der Waals interaction (of the TMD host) and the Zn
interlayer chemical bond is present. The former dominates for
lower dz, leading to a weaker interlayer bond. (ii) For X = Te
and N = Zn, the cleavage energy is always lower than that
of graphene, where (iii) the cleavage energy of Pt2HgTe3 is
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FIG. 1. (a) 2D TMD (MX2) and 2D and 3D M2NX3 atomic struc-
ture, (b) lattice parameter, (c) bucking distance, (d) formation energy
comparison between the TMD and M2NX3, (e) ternary MNX energy
above hull for M2NX3, (f) convex hull for Pd2HgSe3, and (g) cleavage
energy with the dashed line indicating the graphite cleavage barrier.

are rotated by 60◦ with respect to each other, giving rise to
a buckled hexagonal lattice. At the equilibrium geometry, the
lattice constants of the M2NX3 structures are practically inde-
pendent of the transition metal, i.e., nearly the same as those of
the hosts (MX2). For instance, the equilibrium lattice constants
of Pt2NSe3, for N = Zn, Cd, and Hg, differ by less than 0.9%,
compared with that of 1T PtSe2. Such independence is due to
the N−M−N buckled structure [Fig. 1(a)] acting as a source
of strain relief induced by the foreign (N) atom. As shown
in Fig. 1(c), the vertical buckling (dz) of the N−M−N bonds
presents larger (lower) values for X = S (Te).

The energetic stability of the jacutingaitelike structures can
be examined by comparing the formation energy of M2NX3
with the one of its respective (energetically stable) MX2 host,
!TMD = "[M2NX 3] − "[MX2] [Fig. 1(d)]. Here the forma-
tion energy is given by a total energy difference between the
compound x final system (E [x]) and the upper limit of the

chemical potentials of its isolated compounds (µbulk), namely,

"[x] = E [x] −
∑
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niµ
bulk
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where ni indicates its number of atoms of the species i = M,
N , and X . Our !TMD results reveal that the jacutingaitelike
structures are quite likely to occur for X = Se and Te. Here,
we found negative values of !TMD for the former, while for
X = Te it increases by less than 0.1 eV/atom [Fig. 1(d)].
Meanwhile, for X = S the M2NX3 structure is less stable than
that of its host by about 0.4 eV/atom.

Further structural stability of the jacutingaitelike M2NX3
structures has been examined through convex energy hull
analysis, comparing their formation energies (") with other
MNX ternary phases extracted from the Materials Project
database [43,46,47]. We found M2NX3 compounds being a
node point in the convex hull (zero energy above the convex
hull, Ea-h = 0.0 eV/atom [35]) showing its experimental sta-
bility [Fig. 1(e)]. For instance, in Fig. 1(f), Pd2HgSe3 lies in
a convex node with a formation energy of −0.18 eV/atom.
Additionally, all M2HgSe3 (M = Ni, Pd, and Pt) have Ea-h =
0.0, as well as Pd2HgTe3, Pt2CdTe3, and Pt2HgTe3. For the
Se- and Te-based materials that have nonzero energy above
the hull we found Ea-h < 0.18 eV/atom, which indicates its
high stability [48]. For instance, taking Pt2ZnTe3 as a case of
study (Ea-h = 0.08 eV/atom), we have calculated its mono-
layer phonon dispersion [35], where its dynamical stability
was confirmed by the absence of negative frequencies. Addi-
tionally, for the higher Ea-h systems, X = S-based compounds,
their negative values of formation energies, " < 0 [35], in-
dicate that they can be experimentally stabilized throughout
specific synthesis routes and/or substrate support. Although
the SOC has a stabilizing role in the jacutingaite phonon
dispersion [26], we see that it changes the formation energy
by ∼7 meV/atom, which does not change our conclusions.

The cleavage energy (δ) [49] is another important piece of
structural information for the top-down synthesis of 2D sys-
tems. We found that the M2NX3 bulk phase presents cleavage
energies in the range of other experimentally exfoliated ma-
terials [50]. For instance, jacutingaite has a cleavage energy,
δ = 0.46 J/m2 comparable with that of graphene exfoliated
from graphite, δ = 0.39 J/m2 [dashed line in Fig. 1(g)] [51].
When we compare the calculated cleavage energy and the
vertical buckling of the N−M−N bonds [dz in Fig. 1(c)], it
is noticeable that (i) for a given transition metal pair M-N the
δ is proportional to dz, being larger for X = S and lower for
X = Te, this is in agreement with Ref. [32], where the authors
verified that the N atoms are responsible for the interplane
bound of the M2NX3 system, as shown in Fig. 1(a) for the
M2NX3 3D structure. Indeed, taking the Cd and Hg systems,
which have a similar bucking distance, the former presents
a stronger interlayer bond ruled by the bonding energy of
Cd-X being ∼60% greater than that of Hg-X . By contrast, for
Zn, given its lower buckling distance, an interplay between
the van der Waals interaction (of the TMD host) and the Zn
interlayer chemical bond is present. The former dominates for
lower dz, leading to a weaker interlayer bond. (ii) For X = Te
and N = Zn, the cleavage energy is always lower than that
of graphene, where (iii) the cleavage energy of Pt2HgTe3 is
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above hull for M2NX3, (f) convex hull for Pd2HgSe3, and (g) cleavage
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are rotated by 60◦ with respect to each other, giving rise to
a buckled hexagonal lattice. At the equilibrium geometry, the
lattice constants of the M2NX3 structures are practically inde-
pendent of the transition metal, i.e., nearly the same as those of
the hosts (MX2). For instance, the equilibrium lattice constants
of Pt2NSe3, for N = Zn, Cd, and Hg, differ by less than 0.9%,
compared with that of 1T PtSe2. Such independence is due to
the N−M−N buckled structure [Fig. 1(a)] acting as a source
of strain relief induced by the foreign (N) atom. As shown
in Fig. 1(c), the vertical buckling (dz) of the N−M−N bonds
presents larger (lower) values for X = S (Te).

The energetic stability of the jacutingaitelike structures can
be examined by comparing the formation energy of M2NX3
with the one of its respective (energetically stable) MX2 host,
!TMD = "[M2NX 3] − "[MX2] [Fig. 1(d)]. Here the forma-
tion energy is given by a total energy difference between the
compound x final system (E [x]) and the upper limit of the

chemical potentials of its isolated compounds (µbulk), namely,
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where ni indicates its number of atoms of the species i = M,
N , and X . Our !TMD results reveal that the jacutingaitelike
structures are quite likely to occur for X = Se and Te. Here,
we found negative values of !TMD for the former, while for
X = Te it increases by less than 0.1 eV/atom [Fig. 1(d)].
Meanwhile, for X = S the M2NX3 structure is less stable than
that of its host by about 0.4 eV/atom.

Further structural stability of the jacutingaitelike M2NX3
structures has been examined through convex energy hull
analysis, comparing their formation energies (") with other
MNX ternary phases extracted from the Materials Project
database [43,46,47]. We found M2NX3 compounds being a
node point in the convex hull (zero energy above the convex
hull, Ea-h = 0.0 eV/atom [35]) showing its experimental sta-
bility [Fig. 1(e)]. For instance, in Fig. 1(f), Pd2HgSe3 lies in
a convex node with a formation energy of −0.18 eV/atom.
Additionally, all M2HgSe3 (M = Ni, Pd, and Pt) have Ea-h =
0.0, as well as Pd2HgTe3, Pt2CdTe3, and Pt2HgTe3. For the
Se- and Te-based materials that have nonzero energy above
the hull we found Ea-h < 0.18 eV/atom, which indicates its
high stability [48]. For instance, taking Pt2ZnTe3 as a case of
study (Ea-h = 0.08 eV/atom), we have calculated its mono-
layer phonon dispersion [35], where its dynamical stability
was confirmed by the absence of negative frequencies. Addi-
tionally, for the higher Ea-h systems, X = S-based compounds,
their negative values of formation energies, " < 0 [35], in-
dicate that they can be experimentally stabilized throughout
specific synthesis routes and/or substrate support. Although
the SOC has a stabilizing role in the jacutingaite phonon
dispersion [26], we see that it changes the formation energy
by ∼7 meV/atom, which does not change our conclusions.

The cleavage energy (δ) [49] is another important piece of
structural information for the top-down synthesis of 2D sys-
tems. We found that the M2NX3 bulk phase presents cleavage
energies in the range of other experimentally exfoliated ma-
terials [50]. For instance, jacutingaite has a cleavage energy,
δ = 0.46 J/m2 comparable with that of graphene exfoliated
from graphite, δ = 0.39 J/m2 [dashed line in Fig. 1(g)] [51].
When we compare the calculated cleavage energy and the
vertical buckling of the N−M−N bonds [dz in Fig. 1(c)], it
is noticeable that (i) for a given transition metal pair M-N the
δ is proportional to dz, being larger for X = S and lower for
X = Te, this is in agreement with Ref. [32], where the authors
verified that the N atoms are responsible for the interplane
bound of the M2NX3 system, as shown in Fig. 1(a) for the
M2NX3 3D structure. Indeed, taking the Cd and Hg systems,
which have a similar bucking distance, the former presents
a stronger interlayer bond ruled by the bonding energy of
Cd-X being ∼60% greater than that of Hg-X . By contrast, for
Zn, given its lower buckling distance, an interplay between
the van der Waals interaction (of the TMD host) and the Zn
interlayer chemical bond is present. The former dominates for
lower dz, leading to a weaker interlayer bond. (ii) For X = Te
and N = Zn, the cleavage energy is always lower than that
of graphene, where (iii) the cleavage energy of Pt2HgTe3 is
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FIG. 1. (a) 2D TMD (MX2) and 2D and 3D M2NX3 atomic struc-
ture, (b) lattice parameter, (c) bucking distance, (d) formation energy
comparison between the TMD and M2NX3, (e) ternary MNX energy
above hull for M2NX3, (f) convex hull for Pd2HgSe3, and (g) cleavage
energy with the dashed line indicating the graphite cleavage barrier.
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chemical potentials of its isolated compounds (µbulk), namely,

"[x] = E [x] −
∑

i

niµ
bulk
i ,

where ni indicates its number of atoms of the species i = M,
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tionally, for the higher Ea-h systems, X = S-based compounds,
their negative values of formation energies, " < 0 [35], in-
dicate that they can be experimentally stabilized throughout
specific synthesis routes and/or substrate support. Although
the SOC has a stabilizing role in the jacutingaite phonon
dispersion [26], we see that it changes the formation energy
by ∼7 meV/atom, which does not change our conclusions.

The cleavage energy (δ) [49] is another important piece of
structural information for the top-down synthesis of 2D sys-
tems. We found that the M2NX3 bulk phase presents cleavage
energies in the range of other experimentally exfoliated ma-
terials [50]. For instance, jacutingaite has a cleavage energy,
δ = 0.46 J/m2 comparable with that of graphene exfoliated
from graphite, δ = 0.39 J/m2 [dashed line in Fig. 1(g)] [51].
When we compare the calculated cleavage energy and the
vertical buckling of the N−M−N bonds [dz in Fig. 1(c)], it
is noticeable that (i) for a given transition metal pair M-N the
δ is proportional to dz, being larger for X = S and lower for
X = Te, this is in agreement with Ref. [32], where the authors
verified that the N atoms are responsible for the interplane
bound of the M2NX3 system, as shown in Fig. 1(a) for the
M2NX3 3D structure. Indeed, taking the Cd and Hg systems,
which have a similar bucking distance, the former presents
a stronger interlayer bond ruled by the bonding energy of
Cd-X being ∼60% greater than that of Hg-X . By contrast, for
Zn, given its lower buckling distance, an interplay between
the van der Waals interaction (of the TMD host) and the Zn
interlayer chemical bond is present. The former dominates for
lower dz, leading to a weaker interlayer bond. (ii) For X = Te
and N = Zn, the cleavage energy is always lower than that
of graphene, where (iii) the cleavage energy of Pt2HgTe3 is
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FIG. 2. Superposition of band structures for the (a) Ni2NX3,
(b) Pd2NX3, and (c) Pt2NX3 systems, (a1)–(c1) without SOC and
energy in relation to the DP (EDP) and (a2)–(c2) with SOC and energy
in relation to the K point gap’s lower band (ELG). (d) Depiction of the
Dirac bands and SOC effect in the (d1) downward band bending at
M and (d2) graphenelike. (e) Dirac point SOC energy gap (EDP

g ). (f)
Global energy gap between M and K points (EMK

g ). (g) Topological
invariant. (h) Topological transition for Ni2ZnX3 with blue (red) lines
indicating the states without (with) SOC.

lower when compared with that of its counterpart (Pt2HgSe3)
jacutingaite.

Once we have shown the feasibility of the energetically
stable counterparts of jacutingaite, we focus on the electronic
properties and topological phases of single-layer M2NX3 sys-
tems. As shown in Fig. 2(a)–2(c), we found the emergence
of Dirac cones ruled by the hexagonal N−M−N buckled
lattice. The projection of the energy bands, near the Fermi
level, reveals that the Dirac cones are mostly composed of the
transition metal N (s) orbitals hybridized with the host M(d)
orbitals, viz., Ni(3d), Pd(4d ), and Pt(5d ). It is noticeable
that, for a given host transition metal M, the electronic band
structures share nearly the same features around the Fermi
level. For instance, in Fig. 2(a) we present the superposition

of the electronic band structures of Ni2NX3 with N = Zn,
Cd, and Hg, and X = S, Se, and Te; similarly for Pd2NX3
and Pt2NX3, as shown in Figs. 2(b) and 2(c). Such a figure,
where each material contributes with a translucent set of lines
(band structure), allows us to identify similar features in the
compounds characterized by darker regions (more details can
be found in the Supplemental Material [35]). In the absence
of SOC, the linear dispersion of the energy bands at the K and
K′ points gives rise to the Dirac points (DPs) indicated as DP
in Figs. 2(a1)–2(c1), whereas by turning on the SOC contri-
bution we find energy gaps taking place at the DPs [EDP

g in
Figs. 2(a2)–2(c2)]. The SOC in the system is mostly given by
the M atoms [26], and its strength is a quantitative indication
of the stability of topological states. Here, it is worth high-
lighting that SOC-induced energy gaps at the DP [Fig 2(e)] are
larger in Pt2ZnX3 compared with the ones of the other Pt2NX3
systems. For instance, Pt2ZnX3 (with X = Se or Te) presents
EDP

g ≈ 178 meV, being larger by 34 meV (23%) compared
with that of jacutingaite and its counterpart Pt2HgTe3, both
systems present EDP

g = 145 meV. In particular, these findings
can be understood by comparing the equilibrium geometries
of the N−Pt−N buckled hexagonal lattice; namely, Zn–Pt–Zn
presents lower values of vertical buckling and Zn–Pt equilib-
rium bond length (dMN = 2.55 Å) compared with the ones
of Hg–Pt–Hg, dMN = 2.79 Å, strengthening the Pt contri-
bution to the Zn(s) Dirac bands. It is worth pointing out
that larger values of EDP

g in Pt2ZnX3 have been maintained
even upon the use of hybrid functionals (HSE). Here we
found EDP

g = 232 and 242 meV for X = Se and Te, both
values larger than that obtained for jacutingaite, 222 meV
(in Ref. [52] the authors obtained 218 meV using the same
calculation approach).

Besides the energy gap induced by the SOC at the K/K′

points, downward bending of the upper Dirac band along
the K–M direction leads to lower values of global gaps and
eventually results in semimetallic systems. In Fig. 2(f) we
show the energy difference between the lower point of the
upper Dirac band at the M point and the top of the Dirac
valence band at the K point [EMK

g in Figs. 2(d1) and 2(d2)].
Negative values of EMK

g , for M = Ni and Pd systems, indicate
that they are semimetallic. For M = Pt, the SOC strength
always overcomes the downward band bending, where the
semiconducting character has been preserved. Focusing on the
Pt2NTe3 systems, we found indirect energy band gaps of 133
and 61 meV for N = Zn and Hg, respectively, while Pt2HgTe3
presented a direct energy gap (EDP

g < EMK
g ) of 142 meV.

To characterize the topological phase of the M2NX3 sys-
tems we have computed the Z2 [53] invariant by analyzing
the parity of each band at the time-reverse invariant momenta
(TRIM) and considering all bands below the upper Dirac
bands fully occupied [54]. It is worth noting that the pres-
ence of semimetallic bands does not necessarily rule out the
(possible) emergence of topologically nontrivial phases, char-
acterizing a Z2-metallic phase [55]. In this case, the edge states
are no longer protected against backscattering processes. Our
results, summarized in Fig. 2(g), reveal that, while all Hg com-
pounds present a nontrivial topological phase, Ni2ZnX3 and
Pd2CdX3 systems present a trivial → nontrivial topological
transition for X = S → Te. In these systems, there is an extra
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FIG. 2. Superposition of band structures for the (a) Ni2NX3,
(b) Pd2NX3, and (c) Pt2NX3 systems, (a1)–(c1) without SOC and
energy in relation to the DP (EDP) and (a2)–(c2) with SOC and energy
in relation to the K point gap’s lower band (ELG). (d) Depiction of the
Dirac bands and SOC effect in the (d1) downward band bending at
M and (d2) graphenelike. (e) Dirac point SOC energy gap (EDP

g ). (f)
Global energy gap between M and K points (EMK

g ). (g) Topological
invariant. (h) Topological transition for Ni2ZnX3 with blue (red) lines
indicating the states without (with) SOC.

lower when compared with that of its counterpart (Pt2HgSe3)
jacutingaite.

Once we have shown the feasibility of the energetically
stable counterparts of jacutingaite, we focus on the electronic
properties and topological phases of single-layer M2NX3 sys-
tems. As shown in Fig. 2(a)–2(c), we found the emergence
of Dirac cones ruled by the hexagonal N−M−N buckled
lattice. The projection of the energy bands, near the Fermi
level, reveals that the Dirac cones are mostly composed of the
transition metal N (s) orbitals hybridized with the host M(d)
orbitals, viz., Ni(3d), Pd(4d ), and Pt(5d ). It is noticeable
that, for a given host transition metal M, the electronic band
structures share nearly the same features around the Fermi
level. For instance, in Fig. 2(a) we present the superposition

of the electronic band structures of Ni2NX3 with N = Zn,
Cd, and Hg, and X = S, Se, and Te; similarly for Pd2NX3
and Pt2NX3, as shown in Figs. 2(b) and 2(c). Such a figure,
where each material contributes with a translucent set of lines
(band structure), allows us to identify similar features in the
compounds characterized by darker regions (more details can
be found in the Supplemental Material [35]). In the absence
of SOC, the linear dispersion of the energy bands at the K and
K′ points gives rise to the Dirac points (DPs) indicated as DP
in Figs. 2(a1)–2(c1), whereas by turning on the SOC contri-
bution we find energy gaps taking place at the DPs [EDP

g in
Figs. 2(a2)–2(c2)]. The SOC in the system is mostly given by
the M atoms [26], and its strength is a quantitative indication
of the stability of topological states. Here, it is worth high-
lighting that SOC-induced energy gaps at the DP [Fig 2(e)] are
larger in Pt2ZnX3 compared with the ones of the other Pt2NX3
systems. For instance, Pt2ZnX3 (with X = Se or Te) presents
EDP

g ≈ 178 meV, being larger by 34 meV (23%) compared
with that of jacutingaite and its counterpart Pt2HgTe3, both
systems present EDP

g = 145 meV. In particular, these findings
can be understood by comparing the equilibrium geometries
of the N−Pt−N buckled hexagonal lattice; namely, Zn–Pt–Zn
presents lower values of vertical buckling and Zn–Pt equilib-
rium bond length (dMN = 2.55 Å) compared with the ones
of Hg–Pt–Hg, dMN = 2.79 Å, strengthening the Pt contri-
bution to the Zn(s) Dirac bands. It is worth pointing out
that larger values of EDP

g in Pt2ZnX3 have been maintained
even upon the use of hybrid functionals (HSE). Here we
found EDP

g = 232 and 242 meV for X = Se and Te, both
values larger than that obtained for jacutingaite, 222 meV
(in Ref. [52] the authors obtained 218 meV using the same
calculation approach).

Besides the energy gap induced by the SOC at the K/K′

points, downward bending of the upper Dirac band along
the K–M direction leads to lower values of global gaps and
eventually results in semimetallic systems. In Fig. 2(f) we
show the energy difference between the lower point of the
upper Dirac band at the M point and the top of the Dirac
valence band at the K point [EMK

g in Figs. 2(d1) and 2(d2)].
Negative values of EMK

g , for M = Ni and Pd systems, indicate
that they are semimetallic. For M = Pt, the SOC strength
always overcomes the downward band bending, where the
semiconducting character has been preserved. Focusing on the
Pt2NTe3 systems, we found indirect energy band gaps of 133
and 61 meV for N = Zn and Hg, respectively, while Pt2HgTe3
presented a direct energy gap (EDP

g < EMK
g ) of 142 meV.

To characterize the topological phase of the M2NX3 sys-
tems we have computed the Z2 [53] invariant by analyzing
the parity of each band at the time-reverse invariant momenta
(TRIM) and considering all bands below the upper Dirac
bands fully occupied [54]. It is worth noting that the pres-
ence of semimetallic bands does not necessarily rule out the
(possible) emergence of topologically nontrivial phases, char-
acterizing a Z2-metallic phase [55]. In this case, the edge states
are no longer protected against backscattering processes. Our
results, summarized in Fig. 2(g), reveal that, while all Hg com-
pounds present a nontrivial topological phase, Ni2ZnX3 and
Pd2CdX3 systems present a trivial → nontrivial topological
transition for X = S → Te. In these systems, there is an extra
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Jacutingaite-family: A class of topological materials

F. Crasto de Lima ,1,* R. H. Miwa,2,† and A. Fazzio 1,‡

1Brazilian Nanotechnology National Laboratory CNPEM, Caixa Postal 6192, 13083-970 Campinas, São Paulo, Brazil
2Instituto de Física, Universidade Federal de Uberlândia, Caixa Postal 593, 38400-902 Uberlândia, Minas Gerais, Brazil

(Received 10 September 2020; accepted 9 December 2020; published 23 December 2020)

Jacutingate, a recently discovered Brazilian naturally occurring mineral, has been shown to be an experimental
realization of the Kane-Mele topological model. In this paper we present a class of materials, M2NX3 (M =
Ni, Pt, and Pd; N = Zn, Cd, and Hg; and X = S, Se, and Te), sharing jacutingaite’s key features, i.e., high
stability and a topological phase. By employing first-principles calculations we extensively characterize the
energetic stability of this class while showing a common occurrence of the Kane-Mele topological phase. Here
we present Pt-based materials surpassing jacutingaite’s impressive topological gap and lower exfoliation barrier
while retaining its stability.

DOI: 10.1103/PhysRevB.102.235153

The spin-orbit coupling (SOC) in condensed matter is
accountable for the rise of many phenomena, for instance,
topological phases [1], Rashba states [2], exotic spin tex-
tures [3], magnetic anisotropy [4], and spin-orbit torque
transfer [5], to cite a few. Since the successful synthesis of
graphene [6], two-dimensional (2D) materials with sizable
SOC have been pursued as a platform for designing new
electronic and spintronic devices [7–9] as well as for the
discovery and confirmation of new physical phenomena. For
instance, two-dimensional hexagonal lattices and SOC are the
key ingredients to the manifestation of the quantum spin Hall
(QSH) state as predicted by Kane and Mele [10].

Indeed, recent research addressing topological phases in
low-dimensional systems has boosted the search for new
two-dimensional materials with large SOC, for instance, the
2D MXenes [11,12] and Bi-based systems [13–15]. Other
strategies have been proposed based on the incorporation
of adatoms [16–21] and proximity effects [22–24] in order
to strengthen the spin-orbit effects. However, most of these
routes face some difficulties, namely, (i) structural metastabil-
ity, (ii) stability against environment conditions (for instance,
oxidation processes), (iii) difficulties for the experimental re-
alization, and (iv) loss of 2D character due to the electronic
interaction with a given substrate. Thus, new 2D materials
with large SOC, which overcomes the hindrances above, are
still quite desirable.

Jacutingaite (Pt2HgSe3), a naturally occurring mineral, dis-
covered in Brazil by Cabral et al. [25] in 2008, has been
gaining attention in the last few years. The large SOC and
the honeycomb structure of Hg atoms make jacutingaite, in its
monolayer form, a place for the manifestation of the Kane-
Mele topological phase [26], whereas in its bulk form it has
been predicted to host dual topology, being a weak topolog-
ical insulator and a topological crystaline insulator [27–29].

*felipe.lima@lnnano.cnpem.br
†hiroki@ufu.br
‡adalberto.fazzio@lnnano.cnpem.br

Both topological phases, namely, Kane-Mele in monolayer
Pt2HgSe3 and dual in bulk Pt2HgSe3, have been experimen-
tally observed through scanning tunneling microscopy [30]
and angle-resolved photoemission [31] measurements. Its
atomic structure [Fig. 1(a)] can be viewed as the transition
metal dichalcogenide (TMD) PtSe2 with a 1T structural phase,
where 1/4 of the chalcogenides are replaced by Hg. Besides
being a naturally occurring mineral, which indicates its sta-
bility at geological pressures and temperatures, Pt2HgSe3 has
been experimentally synthesized [30–33], as well as its coun-
terpart Pd-based jacutingaitelike structure, Pd2HgSe3 [34].
Those findings suggest that further combinations of a 1T TMD
host with high SOC elements may result in distinct quantum
spin Hall insulators based on jacutingaitelike 2D structures.

In this paper, we present a large class of highly stable
materials hosting QSH and Z2-metallic phases based on the
Kane-Mele model. We employ density functional theory sim-
ulations (see Supplemental Materials [35] and Refs. [36–45]
therein) of the structural and electronic properties of M2NX3
compounds with M = Ni, Pd, and Pt; N = Zn, Cd, and
Hg; and X = S, Se, and Te. Throughout the extensive anal-
ysis of phase diagrams based on MNX compounds, we
present a well-grounded prediction of the energetic stability
of jacutingaitelike M2NX3 structures. Electronic structure cal-
culations reveal the emergence of topological phases, with
SOC-induced (nontrivial) band gaps surpassing the one of
jacutingaite. Further topological characterization reveals the
trivial → nontrivial transition as a function of the chemical
composition, X = S → Te. Finally, addressing the design of
nanodevices, we have examined some key features of these ja-
cutingaitelike structures, namely, the stability/behavior of the
(i) topological gap as a function of the mechanical strain and
the (ii) work function for the different M2NX3 combinations.

As shown in Fig. 1(a), the M2NX3 jacutingaitelike struc-
tures share the same backbone geometry of the 1T TMDs
(MX2), where the chalcogenide atoms (X ) are partially re-
placed by transition metals (N), MX2 → M2NX3, resulting
in buckled N−M−N bonds. The N atoms form triangular
lattices on the opposite sides of the MX2 host, which in turn

2469-9950/2020/102(23)/235153(6) 235153-1 ©2020 American Physical Society
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Abstract: Tilkerodeite, ideally Pd2HgSe3, is a new platinum-group selenide from the Eskaborner
Stollen (Adit Eskaborn) at Tilkerode, Harz Mountains, Germany. Tilkerodeite crystals occur as euhedral
inclusions in tiemannite or as extremely fine-grained lamellar aggregates (grain-size up to 3 µm)
in a dolomite–ankerite matrix, together with clausthalite, tiemannite, jacutingaite, stibiopalladinite,
and native gold. Neighbouring Se-bearing minerals include tischendorfite and chrisstanleyite.
Tilkerodeite is opaque with a metallic luster, and is flexible in blade-like crystals, with perfect
basal cleavage {001}. In plane-polarized light, tilkerodeite is brownish-grey. It is weakly bireflectant,
and weakly pleochroic in shades of light-brown and grey. The anisotropy is weak, with rotation tints in
weak shades of greenish-brown and grey-brown. The range of reflectance is estimated in comparison
to clausthalite with 45–50%. Electron-microprobe analyses yield the mean composition (wt. %) Se
32.68, Hg 26.33, Pt 20.62, Pd 15.89, Pb 2.72, Cu 0.66, S 0.27, total 99.17 wt. %. The empirical formula
(based on six atoms pfu) is (Pd1.08Pt0.76Pb0.09Cu0.07)S2.00Hg0.95(Se2.98S0.07)S3.05. The ideal formula is
Pd2HgSe3. Tilkerodeite is trigonal, with Pt4Tl2Te6-type structure, space group P3m1, a = 7.325(9) Å,
c = 5.288(6) Å, V = 245.7(9) Å3, and Z = 2. It is the Pd-analogue of jacutingaite. Tilkerodeite
formed hydrothermally, possibly involving the alteration of tiemannite by low-temperature oxidizing
fluids. The new species has been approved by the IMA-CNMNC (2019-111) and is named after the
locality. Tilkerode is the most important selenide-bearing occurrence in Germany and type locality of
naumannite, eskebornite, and tischendorfite.

Keywords: tilkerodeite; Pd2HgSe3; jacutingaite; Pt2HgSe3; palladium; platinum; selenium; new
mineral; Tilkerode; Harz Mountains

1. Introduction

Tilkerode, in the eastern Harz Mountains, is the most important selenide deposit in Germany,
which was mined for iron (hematite) and native gold in the 18 and 19 Centuries [1]. It hosts 18 confirmed
selenides, and is the type locality for naumannite (Ag2Se), eskebornite (CuFeSe2), and tischendorfite
(Pd8Hg3Se9) [2].

This paper provides the description of a new platinum-group element (PGE) mineral, tilkerodeite,
ideally Pd2HgSe3, from Tilkerode. The new selenide was discovered as part of the re-examination of the
tischendorfite co-type material (14 newly mounted and polished thick sections taken from veinlet sample
No. 4154, Figure 1) and studied by polarized light microscopy (PLM), scanning electron microscopy
(SEM) combined with electron-probe microanalyses (EPMA), and electron back-scatter di↵raction
(EBSD). This sample was collected from the Eskaborner Stollen (Eskaborn adit; 51�3803” North,
11�1904” East), at the 60-m level, 5 m north of the blind shaft IV [1].
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ALLOYS



Topological insulating phase arising in transition metal 
dichalcogenide alloy

PtSe2  is a semiconductor with trivial bandgap
>-> 25% of Se substituted by Hg  >>->>>

Pt2HgSe3 is a topological insulator with a large bandgap

PtSe2 monolayer -> HgSe -> Pt(HgxSe 1-x)2 alloy

Ordered

Random



Ordered alloys
Pt(HgxSe1-x)2 with  x=0.25, 0.50, 0.75 and 1.0

�$ -ATER� �� �����	 ������ & #RASTO DE ,IMA ET AL

&IGURE �� /RDERED CONFIGURATION �A	 ATOMIC STRUCTURE� WITH 0T�(G�3E ATOMS SHOWN IN GRAY�GREEN�PURPLE� �B	 FORMATION ENERGY�
AND �C	 BAND STRUCTURE FOR 0T�(GX3E�−X	�� 4HE BAND SHOWN IN BLACK �RED	 ARE FOR CALCULATION WITHOUT �WITH	 3/#�

ARISES IN A +ANEn-ELE LIKE MODEL ;��=� BUT FOR (G
ATOMS LYING ON OTHER POSITIONS� NOT ONLY THE HONEY
COMB STRUCTURE �X= ����	� &INALLY� AS A SIGNATURE OF
THE 3/#INDUCED TOPOLOGICAL GAPS IN 0T�(GX3E�−X	��
IN FIGURES ��G	n�I	 WE PRESENT THE PROJECTED EDGE STATES
WHICH ARE CHARACTERIZED BY THE EMERGENCE OF �CHIRAL	
SPINPOLARIZED $IRAC CONES CHARACTERISTIC OF THE 13(
PHASE� &OR THE X= ��� A TRIVIAL BULK BAND IS WITHIN
THE TOPOLOGICAL GAP �FIGURE ��E		� WHICH LEADS TO ITS
ENERGETIC DEGENERACY WITH THE TOPOLOGICAL EDGE STATES
�FIGURE ��H		�

!CCORDING TO ;��� ��� ��n��=� DISORDERED SYSTEMS
CAN ALSO EXHIBIT NONTRIVIAL TOPOLOGICAL PHASES� (ERE�
FOCUSING ON THE 0T�(GX3E�−X	� ALLOYS� WE MIGHT HAVE
A RANDOM DISTRIBUTION OF THE (G3E IMPURITIES PRE
SERVING THE HOST�S �� 4	 BACKBONE STRUCTURE� 3UCH RAN
DOMNESS CAN ALTER THE ELECTRONIC�TOPOLOGICAL PROPER
TIES�IDENTITIES OF 0T�(GX3E�−X	� ALLOYS AS WELL AS THE
ENERGETIC STABILITY FOR EACH ALLOY CONCENTRATION�

)N ORDER TO PROVIDE A REALISTIC DESCRIPTION OF RAN
DOM ALLOYS� THE DISTRIBUTION OF THE (G3E IMPURITIES
IN 0T�(GX3E�−X	� WAS GENERATED BY USING THE 313
APPROACH ;��=� 7E HAVE GENERATED 313 STRUCTURES
RANGING FROM X = ���� TO X = ����� "Y TAKING INTO
ACCOUNT THE CONFIGURATIONAL ENTROPY� 3= K" LN(Ω)�
WITH Ω THE NUMBER OF EQUIVALENT CONFIGURATIONS� WE
HAVE DETERMINED THE FREE ENERGY �&= 5−43	 AS A
FUNCTION OF THE TEMPERATURE �4	 AND ALLOY CONCEN
TRATION� X� /UR RESULTS OF FREE ENERGY� SUMMARIZED IN
FIGURE �� REVEAL THAT �I	 THERE IS AN ENERGETIC PREFERENCE

FOR THE PRISTINE 0T3E� �X= �	 FOR TEMPERATURES WITH
K"4< ��ME6� WHILE �II	 THE RANDOM COUNTERPART OF
JACUTINGAITE BECOMES MORE STABLE THAN ITS ORDERED
PHASE FOR K"4> �ME6� WHERE �III	 SUCH AN ENERGETIC
PREFERENCE FOR X = ���� HAS BEEN MAINTAINED UP TO
TEMPERATURESWITH K"4< ��ME6� AND �IV	 ABOVE THAT�
WE FIND THE 0T(G3E RANDOM ALLOY WILL PRESENT THE LOW
EST FREE ENERGY�

!S DISCUSSED ABOVE� WE FOUND THAT 0T�(GX3E�−X	�
ORDERED ALLOYS� WITH X = ����� ����� AND �����
PRESENT THE 13( PHASE CHARACTERIZED BY THE 3/#
INDUCED NONTRIVIAL BANDGAPS AT THE &ERMI LEVEL�
FIGURE ��C	� )N THE SEQUENCE� WE WILL EXAMINE THE
TOPOLOGICAL IDENTITIES OF 0T�(GX3E�−X	� RANDOMALLOYS
WITHIN THE SAME RANGE OF ALLOY CONCENTRATIONS� 'IVEN
THE NONPERIODICITY OF THE RANDOM ALLOYS� WE HAVE
COMPUTED A REAL SPACE INVARIANT �SPIN "OTTINDEX	
WHICH IS EQUIVALENT TO THE SPIN#HERN NUMBER ;��=�
)N FIGURE � WE HIGHLIGHT �IN GRAY	 THE TOPOLOGICAL
ENERGY GAPS OF THE RANDOM ALLOY SYSTEMS� /UR RES
ULTS REVEAL THAT� ALTHOUGH THE RANDOM DISTRIBUTION
INTRODUCES TRIVIAL BANDGAPS CLOSE TO THE &ERMI ENERGY�
THE TOPOLOGICAL GAPS ARE ALWAYS PRESENT WITHIN AN
ENERGY INTERVAL OF ± ��� E6 AROUND THE &ERMI LEVEL�
4HE TRIVIAL ENERGY GAPS AROUND THE &ERMI LEVEL ARISE
AS THE RANDOM DISTRIBUTION INTRINSICALLY INTRODUCES
SUBSPACES OF NONCONNECTED (G ATOMS THAT PRESENT
TRIVIAL ATOMIC SORBITALS� (ERE� ALTHOUGH THE NON
UNIFORM DISTRIBUTION OF THE (G3E IMPURITIES GIVES
RISE TO SENSIBLE DIFFERENCES IN THE ENERGY LOCALIZATION
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Pt(HgxSe1-x)2 with  x=0.25, 0.50, 0.75 and 1.0
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Black No-SOC  and Red with-SOC
PtHg2

PtSe2

Topological phase arise due to hybridization of the Hg s-orbitals with the Pt-dorbitalsMetallic Insulator
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&IGURE �� �A	 "RILLOUIN ZONE PATH� �B	n�F	 /RBITAL PROJECTED BAND STRUCTURE� WITH �B	 X= ����� �C	 X= ����� �D	 X= �����
�E	 X= ���� AND �F	 X= ����� /RDERED STRUCTURE SEMIINFINITE RIBBONS SHOWING THE TOPOLOGICAL EDGE STATES FOR �G	 X= �����
�H	 X= ���� AND �I	 X= �����

&IGURE �� &REE ENERGY AS A FUNCTION OF TEMPERATURE WITH
CONFIGURATIONAL ENTROPY ACCOUNTED FOR THE ORDERED �DOTTED
LINES	 AND 313 �CONTINUOUS LINES	 ALLOYS�

AND THE WIDTH OF THE TOPOLOGICAL GAPS� OUR FINDINGS
INDICATE THAT THE 0T�(GX3E�−X	� SYSTEM WILL ALWAYS
EXHIBIT NONTRIVIAL BANDGAPS FOR ALLOY CONCENTRATIONS
BETWEEN ���� AND ����� REGARDLESS OF HOW �ORDERED OR

RANDOMLY	 THE (G3E IMPURITIES ARE DISTRIBUTED IN THE
0T3E� HOST� 4HIS RESULT IS IN LINE WITH THAT OBTAINED
BY ,EE ET AL ;��=� THE AUTHORS VERIFIED THE STABILITY
OF THE Z�TOPOLOGICAL PHASE UPON THE INCLUSION OF
ALEATORY VACANCIES� THROUGH DISORDERED POTENTIALS� IN
THE +ANEn-ELEMODEL ON THE HONEYCOMB LATTICE� "ACK
TO OUR 0T�(GX3E�−X	� SYSTEM� SINCE 0T3E� �X = �	 IS A
TRIVIAL INSULATOR� WHILE 0T�(G3E� �X = ����� JACUTIN
GAITE	 IS A TOPOLOGICAL INSULATOR� IT IS EXPECTED A TRIVIAL
↔ NONTRIVIAL TOPOLOGICAL TRANSITION FOR ALLOY CONCEN
TRATIONS BETWEEN � AND �����

���� 4OPOLOGICAL LIMIT
,OWERING THE (G3E CONCENTRATION� X→ �� WILL LEAD THE
0T�(GX3E�−X	� SYSTEM TO A TOPOLOGICALLY TRIVIAL PHASE�
0T3E�� )N THIS SUBSECTION� WE WILL LOOK AT A TRIVIAL ↔
NONTRIVIAL TOPOLOGICAL TRANSITION IN LIGHT OF THE SPA
TIAL LOCALIZATION OF THE (G3E IMPURITIES �ELECTRON PER
COLATION LIMIT	�

4HE TOPOLOGICAL CHARACTER CAN BE PREDICTED BY THE
SPIN #HERN NUMBER� C(S) = C+ − C−� WITH CJ THE #HERN

�
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Pt(HgxSe1-x)2 with  x=0.25, 0.50, 0.75

SEMI-INFINITE

All topological materials

Z2=1 Z2=1

Z2=1

(projected edges states)



Ordered configura1on Random configuration

Our results reveal that the Pt(HgxSe1-x)2
ordered alloys present a non-trivial 
topological phase

??? Random alloys ?
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FOR PREDICTING AND SYNTHESIZING TOPOLOGICAL MATERIALS
BASED ON �$ 4-$S�

)N THIS PAPER� WE HAVE STUDIED THE QUANTUM SPIN
(ALL �13(	 PHASE IN 0T3E� MONOLAYER �-,	 UPON
THE INCLUSION OF SUBSTITUTIONAL(G3E IMPURITIES� RESULT
ING IN ORDERED AND RANDOM 0T�(GX3E�−X	� ALLOYS� 7E
START OUR INVESTIGATION THROUGH THE CALCULATION OF THE
(G3E SUBSTITUTIONAL ENERGY IN THE 0T3E� HOST� 7E HAVE
DISCUSSED THE ENERGETIC PREFERENCE FOR THE ORDERED→
RANDOM TRANSITION AS A FUNCTION OF THE TEMPERATURE
AND ALLOY CONCENTRATION� 4OPOLOGICAL CHARACTERIZATION
OF THE ORDERED PHASE� PERFORMED BY THE CALCULATION OF
THEZ� INVARIANT� REVEALS THAT THE 0T�(GX3E�−X	� ALLOYS
ARE TOPOLOGICAL AS PREDICTED BY THE +ANEn-ELE MODEL�
FOR X BETWEEN ���� AND �����7HEREAS� AT THE EDGE CON
CENTRATIONS� WE FOUND THE Z�METALLIC PHASE ;��= FOR
X = ��� �0T(G�	� AND A TRIVIAL INSULATOR FOR X = ��
0T3E� HOST� 4HE TOPOLOGICAL CHARACTER OF THE RANDOM
ALLOYS� EXAMINED THROUGH THE CALCULATION OF THE SPIN
"OTT INDEX� REVEALS THAT THE TOPOLOGICAL PHASE OF THE
0T�(GX3E�−X	� ALLOYS HAS BEEN PRESERVED EVEN UPON
A RANDOM DISTRIBUTION OF THE (G3E IMPURITIES� )N THE
SEQUENCE� THE TOPOLOGICAL NONTRIVIAL↔ TRIVIAL TRANS
ITION HAS BEEN EXAMINED BY THE CALCULATION OF THE PER
COLATION THRESHOLD OF THE ORBITAL OVERLAP OF THE (G3E
WAVE FUNCTIONS� RANDOMLY� EMBEDDED IN THE 0T3E�
HOST�

�� -ETHODS

4HE CALCULATIONS WERE PERFORMED ON THE 6IENNA
ABINITIO SIMULATION PACKAGE ;��=� WITHIN A PLANE
WAVE BASE WITH A CUTOFF ENERGY OF ��� E6� 4HE
SPINnORBIT COUPLING WAS TAKEN INTO ACCOUNT IN ALL CAL
CULATIONS� WHERE THE EXCHANGE AND CORRELATIONS WERE
TREATED WITH THE 0ERDEWn"URKn%RNZEHOF FUNCTIONAL
;��=� 4HE ELECTRONION INTERACTIONS WERE DESCRIBED
WITHIN THE PROJECTED AUGMENTED WAVE ;��= METHOD�
WITH ALL ATOMS ALLOWED TO RELAX UNTIL EACH ATOM RESULT
ANT FORCEWAS LOWER THAN ��−� E6¢−�� &OR THE PRISTINE
UNIT CELL �5#	� THE TOTAL ENERGY WAS CALCULATED ON THE
�$ ": WITH A REGULAR +POINT GRID OF �× � AND �× �
FOR THE ATOM�S RELAXATION AND SELFCONSISTENT CHARGE
DENSITY� RESPECTIVELY� 4HE SAME +POINT DENSITY WAS
TAKEN ON THE LARGER SUPERCELL CALCULATIONS� 4HE TOPO
LOGICAL INVARIANT �Z� ;��� ��= AND SPIN"OTT INDEX
;��=	 AND SEMIINFINITE RIBBON CALCULATIONS WERE PER
FORMED AFTER EXTRACTING A 7ANNIER FUNCTION TIGHT
BIDING MODEL FROM THE ABINITIO CALCULATIONS THROUGH
THE 7ANNIER�� CODE ;��=�

&OR THE RANDOM ALLOY� WE HAVE GENERATED THE ALLOY
STRUCTURE THROUGH THE SPECIALQUASIRANDOM STRUCTURE
�313	 ;��= FOR CELLS WITH �� AND �� ATOMS ACHIEVING
�STNEIGHBOR PAIR CORRELATION �0#	 EXACTLY RANDOM�
AND �NDNEIGHBOR AND �RDNEIGHBOR 0# EXACTLY RAN
DOM FOR MOST STRUCTURES� 3UCH STRUCTURES REPRESENT
SYSTEMS WITHOUT TRANSLATIONAL SYMMETRY� THEIR RECIP
ROCAL SPACE IS UNDEFINED� AND THEREFORE A DIFFERENT
APPROACH FOR COMPUTING THE Z� INVARIANT IS NEEDED�

2ECENTLY AN APPROACH INVOLVING THE EVALUATION OF THE
SPIN "OTT INDEX WAS SUCCESSFUL TO CHARACTERIZE NON
PERIODIC SYSTEMS ;��� ��=� WHICH WE COMPUTED FOR
THE RANDOM ALLOY STRUCTURES� IMPLEMENTED WITHIN THE
0!/&,/7 CODE ;��=�

�� 2ESULTS

���� (Gn(GINTERACTION EMBEDDED IN 0T3E� MATRIX
4HE FORMATION OF JACUTINGAITE� 0T�(G3E�� CAN BE
VIEWED AS A �PARTIAL	 SUBSTITUTION OF 3E WITH (G ATOMS
IN THE � 4 PHASE OF THE 0T3E� MATRIX ;�n�=� )N THIS CASE�
THE SUBSTITUTIONAL ENERGY �%S	 OF N 3E ATOMS BY (G IN
THE 0T3E� IS

%S = (%SYSTEM + N×µ3E − %MATRIX − N×µ(G)/N, ��	

WITH %SYSTEM THE TOTAL ENERGY OF THE FINAL �(G3E DOPED	
SYSTEM� %MATRIX THE TOTAL ENERGY OF THE � 4 0T3E� MATRIX�
µ3E AND µ(G ARE THE CHEMICAL POTENTIALS OF 3E AND (G
ATOMS� RESPECTIVELY�

,ET US START WITH A SINGLE SUBSTITUTIONAL IMPUR
ITY OF (G IN THE 3E SITE� (G3E� 4HE CALCULATIONS WERE
PERFORMED BY USING A 0T3E� TETRAGONAL SUPERCELL WITH
DIMENSIONS OF ���� ¢ AND ���� ¢� SCHEMATICALLY SHOWN
IN FIGURE ��A	� IN ORDER TO AVOID SPURIOUS INTERAC
TIONS BETWEEN THE PERIODIC IMAGES� /UR RESULTS OF %S�
PRESENTED IN FIGURE ��B	� INDICATES THAT THE FORMA
TION OF A SINGLE (G3E �INDICATED BY A BLUECIRCLE IN
FIGURE ��A		 IS AN ENDOTHERMIC PROCESS� %S > �� WITH
HIGHER OCCURRENCE RATE AT THE 3EPOOR �0TRICH	 CON
DITION� !LTHOUGH THE POSITIVE VALUES OF %S� IT IS WORTH
NOTING THAT THE COMBINATION OF THE ENERGETIC PREFER
ENCE OF FORMATION OF 3E VACANCIES �63E	 IN 0T3E� AT
THE 3EPOOR CONDITION ;��� ��=� AND THE EXPERIMENTAL
REALIZATION OF DOPING OF 4-$S �INCLUDING 0T3E�	 BY
FILLING THE CHALCOGEN VACANCIES CREATED BY ELECTRON
IRRADIATION ;�� �=� MAKES THE FORMATION OF (G3E IN
0T3E� A QUITE LIKELY PROCESS�

)N THE SEQUENCE� THE HIGHER MOBILITY OF 63E�
INDUCED BY AN ELECTRON BEAM� PROMOTES THE FORM
ATION OF ENERGETICALLY STABLE PAIRED DIVACANCIES AND
VACANCYLINE STRUCTURES IN SINGLELAYER 0T3E� ;��� ��=�
3INCE� AS DISCUSSED ABOVE� THESE INTRINSIC DEFECTS CAN
BE FILLED UP BY FOREIGN ATOMS� IT IS WORTH INVESTIG
ATING THE INTERACTION BETWEEN THE (G3E IMPURITIES
EMBEDDED IN 0T3E�� (ERE� WE HAVE CALCULATED THE
FORMATION ENERGY OF (G�3En(GI3E PAIR CONFIGURATIONS�
WITH I = �n�� AS DEPICTED IN FIGURE ��A	� "LACK �2ED	
CIRCLES INDICATE (GI3E ATOMS LYING ON THE SAME �OPPOS
ITE	 SIDE OF (G�3E �BLUE CIRCLE	� /UR RESULTS OF %S AS
A FUNCTION OF THE DISTANCE BETWEEN THE IMPURITIES�
FIGURE ��C	� REVEAL THAT THE (G�3En(G�3E CONFIGURATION
WILL BE THE MOST STABLE �LIKELY	 ONE� WHICH IS CHARAC
TERIZED BY INLINE (Gn0Tn(G BONDS SHARING THE SAME
0T ATOMS� )NTERESTINGLY� SUCH A (Gn0Tn(G BONDING
CONFIGURATION IS EXACTLY THAT FOUND IN THE 0T�(G3E�
CRYSTALS� WHICH SUGGESTS THAT (G�3En0Tn(G�3E PAIRS ACT
AS SEEDS FOR THE FORMATION OF TOPOLOGICAL INSULATOR

�

Tetragonal supercell 18.7A x  32.4A

8x8 with 192 atoms.



>Substitutional energy for a single Hg (n=1)



>Substitutional energy for interacting Hg pairs (n=2)
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For distances greater than 11A NO change in 
energy

Tetragonal supercell 18.7A x  32.4A
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3

Pair most stable Hg0—Hg3 bonds sharing the same Pt 
atoms

Hg-Pt-Hg exactly that found(that we expected) in 
the Pt2HgSe3 crystal



• The Hg “wavefunctions” are 
overlaping with each other up 
to ~1,1nm, defining a 
localization lengthD > 11,2A



𝑃𝑡𝐻𝑔!𝑃𝑡𝑆𝑒!

𝑃𝑡 𝐻𝑔"𝑆𝑒#$" !

𝑥 = 0.250.00 0.50 0.75 1.00

Order

Disorder

QSH MetallicSemiconductor
Trivial

QSHQSH

(𝒙 = 𝟎. 𝟐𝟓, 𝟎. 𝟑𝟑, 𝟎. 𝟒𝟒, 𝟎. 𝟓𝟎, 𝟎. 𝟓𝟔, 𝟎. 𝟔𝟔, 𝟎. 𝟕𝟓)

SQS 1st-neighbor,,2st.,3st pair 
correlation exactly random.



Random distribution
Pt (HgxSe1-x)2  >>> HgSe presenving the host 1T

*To provide a more realistic description of random alloys > SQS (special quasi random)
approach
from x=0.25 to x=0.75 (Zunger et al PRL 1990)

**Configurational entropy S= KBln(Ω) X   F=U-TS ( as a function of temperature)
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BETWEEN ���� AND ����� REGARDLESS OF HOW �ORDERED OR

RANDOMLY	 THE (G3E IMPURITIES ARE DISTRIBUTED IN THE
0T3E� HOST� 4HIS RESULT IS IN LINE WITH THAT OBTAINED
BY ,EE ET AL ;��=� THE AUTHORS VERIFIED THE STABILITY
OF THE Z�TOPOLOGICAL PHASE UPON THE INCLUSION OF
ALEATORY VACANCIES� THROUGH DISORDERED POTENTIALS� IN
THE +ANEn-ELEMODEL ON THE HONEYCOMB LATTICE� "ACK
TO OUR 0T�(GX3E�−X	� SYSTEM� SINCE 0T3E� �X = �	 IS A
TRIVIAL INSULATOR� WHILE 0T�(G3E� �X = ����� JACUTIN
GAITE	 IS A TOPOLOGICAL INSULATOR� IT IS EXPECTED A TRIVIAL
↔ NONTRIVIAL TOPOLOGICAL TRANSITION FOR ALLOY CONCEN
TRATIONS BETWEEN � AND �����

���� 4OPOLOGICAL LIMIT
,OWERING THE (G3E CONCENTRATION� X→ �� WILL LEAD THE
0T�(GX3E�−X	� SYSTEM TO A TOPOLOGICALLY TRIVIAL PHASE�
0T3E�� )N THIS SUBSECTION� WE WILL LOOK AT A TRIVIAL ↔
NONTRIVIAL TOPOLOGICAL TRANSITION IN LIGHT OF THE SPA
TIAL LOCALIZATION OF THE (G3E IMPURITIES �ELECTRON PER
COLATION LIMIT	�

4HE TOPOLOGICAL CHARACTER CAN BE PREDICTED BY THE
SPIN #HERN NUMBER� C(S) = C+ − C−� WITH CJ THE #HERN

�

Free energy as funcbon of temperature.

(i) PtSe2 energetic preference for KBT<15meV
(ii)Above ~ KBT > 40meV PtHgSe random present lowest free 

energy

(2x-1) 2
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&IGURE �� $ISORDERED ALLOY STRUCTURES� GENERATED WITHIN THE 313 METHOD �UPPER PANELS	 AND RESPECTIVE TOPOLOGICAL GAPS �LOWER
PANELS	� /N THE LOWER PANELS� EACH BLUE POINT REPRESENTS THE ENERGY OF A GIVEN EIGENVALUE OF THE (AMILTONIAN� TO WHICH WE
ATTRIBUTE A LABEL �STATE INDEX	 FOR BETTER PRESENTATION STARTING FROM THE LOWER ENERGY STATE� 4HE BLUE LINE CONNECTING EACH STATE
ENERGY POINT IS JUST A GUIDE TO THE EYE� 4HE TOPOLOGICAL GAPS DEFINED BY THE SPIN "OTT INDEX ARE THE REGIONS HIGHLIGHTED IN GRAY�

NUMBER ON THE SUBSPACE OF J =+,− SPIN� 4HIS IS
DEPENDENT ON THE INTEGRATION OVER A CLOSED SURFACE OF
THE "ERRY CONNECTION�

CJ =
OCCUP∑

N

˛
#

!!( J)
N · D!K, ��	

WITH !!(σ)
N = I〈N,!K,σ|∇K|N,!K,σ〉� (ERE� I∇K IS THE

DEFINITION OF THE POSITION OPERATOR ON THEMOMENTUM
SPACE� )F THE SYSTEM IS COMPOSED ONLY OF FULLY LOCAL
IZED STATES �ATOMIC LIMIT	� THAT IS� EIGENFUNCTIONS OF THE
POSITION OPERATOR�

CJ =
OCCUP∑

N

XN

˛
#
DK= �. ��	

4HEREFORE� A NONZERO #HERN NUMBER REQUIRES THE
ELECTRONIC STATES TO NOT BE COMPLETELY LOCALIZED� 4HIS
IMPOSES A NECESSARY �HOWEVER NOT SUFFICIENT	 CONDI
TION FOR THE EMERGENCE OF THE 13( PHASE� 4HAT IS� IN
0T�(GX3E�−X	� ALLOYS� THE (G3E IMPURITY WAVE FUNC
TIONS �)7&S	 SHOULD INTERACT WITH ONE ANOTHER ABOVE
A GIVEN PERCOLATION LIMIT� I�E� A THRESHOLD RANDOMALLOY
CONCENTRATION WHICH LEADS TO THE TRIVIAL↔ NONTRIVIAL
TOPOLOGICAL TRANSITION�

(ERE WE CAN ESTIMATE SUCH A THRESHOLD CONCEN
TRATION IN 0T�(GX3E�−X	� RANDOM ALLOYS BASED UPON
THE PERCOLATION THRESHOLD OF THE )7&S� )N THIS CASE�
THE TOPOLOGICAL TRANSITION WILL BE DICTATED BY THE ELEC
TRONIC PERCOLATION THROUGH IMPURITY SITES EMBEDDED
IN THE 0T3E� HOST� 4HAT IS� IF THE OVERLAP OF NEIGHBOR
ING )7&S ENABLES THE ELECTRONIC PERCOLATION THROUGH A
LARGE �INFINITE	 CLUSTERED SET OF (G3E ATOMS� THE ENERGY
DISPERSION BETWEEN THE IMPURITY STATES WILL LEAD TO THE
NONTRIVIAL TOPOLOGICAL PHASE� /N THE OTHER HAND� IF
THE NEIGHBORING )7&S DO NOT OVERLAP �ATOMIC LIMIT	�
THE ABSENCE OR NEARLY ZERO ENERGY DISPERSION WILL RES
ULT IN A TRIVIAL PHASE� )N THIS CASE� BASED ON THE RAN
DOM DISTRIBUTION OF (G3E IN A HEXAGONAL LATTICE �ON

THE 3E SITES	� THE PERCOLATION THRESHOLD CAN BE WRITTEN
AS ;��=�

φC = �− E−N# = �.��, ��	

WHERE N# IS THE CRITICAL RATIO BETWEEN THE AREA �!	
OCCUPIED BY THE )7&S AND THAT OF THE UNITY CELL �5#	�
N# = !)/!5#� (ERE� THE INTERACTION BETWEEN (G3E
IMPURITIES WAS ESTIMATED BASED ON THE SUBSTITUTIONAL
ENERGY� %S� AND ELECTRONIC INTERACTION BETWEEN THE
IMPURITY ATOMS� !S SHOWN IN FIGURE ��C	� THE (G�3En
(G�3E� (G�3En(G�3E� AND(G�3En(G��3E CONFIGURATIONS HAVE
NEARLY THE SAME %S VALUES� I�E� SUBSTITUTIONAL ENERGY
DIFFERENCES �∆%S	 OF ABOUT ���� E6�(G3EATOM� WHICH
CORRESPONDS TO (G3En(G3E DISTANCES� DS� BETWEEN ��
AND ��¢� &OR DS OF �� ¢� WE FOUND AN ELECTRONIC
�(/-/,5-/	 INTERACTION OF∼�ME6 BETWEEN THE
(G3E IMPURITIES� ∆ε= �ME6� WHICH IS SMALLER THAN
THE 3/# INDUCED NONTRIVIAL BANDGAPS� 4HUS� WE CAN
ASSUME THAT �� ¢ IS THE LOWER LIMIT FOR THE ORBITAL
LOCALIZATION OF THE )7&S� I�E� FOR DS > ��¢ WE WILL
HAVE ∆%S < �.�� E6�(G3EATOM AND ∆ε< �ME6� )N
0T�(GX3E�−X	�� AN AVERAGED DISTANCE OF �� ¢ BETWEEN
(G3En(G3E IMPURITIES RESULTS IN A TRIVIAL ↔ TOPOLO
GICAL THRESHOLD CONCENTRATION XT = �.��� !LTHOUGH THE
INTERPRETATION OF THE ORBITAL OVERLAP BY ITSELF IS NOT SUF
FICIENT TO ESTABLISH A NONTRIVIAL PHASE� ITS COMPETITION
WITH THE SPINnORBIT COUPLING STRENGTH CAN DICTATE IT�
)N LIGHT OF THE +ANEn-ELE MODEL ;��= �BEING JACUTIN
GAITE� X= ����� CHARACTERIZED EXACTLY BY THIS MODEL
;�=	� THERE IS A COMPETITION BETWEEN NONSPINORBIT
GAP OPENING �λV	� AND THE SPINnORBIT STRENGTH �λSO	
TO ENSURE A TOPOLOGICAL PHASE� THAT IS �

√
�> λV/λSO

;��=� !BOVE WE HAD ESTIMATED THE NONSPINnORBIT GAP
TO BE ∆ε∼ �.��� E6� WHILE THE SYSTEM 3/# GAP IS
%G ∼ �.� E6� THAT IS� TWO ORDER OF MAGNITUDE HIGHER�
4HE FRACTION OF THIS VALUES ARE MUCH LOWER THAN
THE �

√
� VALUE PREDICTED ON THE ORIGINAL +ANEn-ELE

WORK� WHICH IS A STRONG INDICATION THAT THE NONTRIVIAL

�

The blue point represents the eigenvalue of the Hamiltonian. The blue line is just a guide to the eye

For a  non-periodicity of the random alloy, we have computed a real space invariant :
Spin Bott-index, which is equivalent to the spin-Chern number.
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• The Hg wavefunc/ons 
are overlaping with each 
other up to ~1,0nm, 
defining a localiza/on 
length

D > 11.2A
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&IGURE �� �A	 "RILLOUIN ZONE PATH� �B	n�F	 /RBITAL PROJECTED BAND STRUCTURE� WITH �B	 X= ����� �C	 X= ����� �D	 X= �����
�E	 X= ���� AND �F	 X= ����� /RDERED STRUCTURE SEMIINFINITE RIBBONS SHOWING THE TOPOLOGICAL EDGE STATES FOR �G	 X= �����
�H	 X= ���� AND �I	 X= �����

&IGURE �� &REE ENERGY AS A FUNCTION OF TEMPERATURE WITH
CONFIGURATIONAL ENTROPY ACCOUNTED FOR THE ORDERED �DOTTED
LINES	 AND 313 �CONTINUOUS LINES	 ALLOYS�

AND THE WIDTH OF THE TOPOLOGICAL GAPS� OUR FINDINGS
INDICATE THAT THE 0T�(GX3E�−X	� SYSTEM WILL ALWAYS
EXHIBIT NONTRIVIAL BANDGAPS FOR ALLOY CONCENTRATIONS
BETWEEN ���� AND ����� REGARDLESS OF HOW �ORDERED OR

RANDOMLY	 THE (G3E IMPURITIES ARE DISTRIBUTED IN THE
0T3E� HOST� 4HIS RESULT IS IN LINE WITH THAT OBTAINED
BY ,EE ET AL ;��=� THE AUTHORS VERIFIED THE STABILITY
OF THE Z�TOPOLOGICAL PHASE UPON THE INCLUSION OF
ALEATORY VACANCIES� THROUGH DISORDERED POTENTIALS� IN
THE +ANEn-ELEMODEL ON THE HONEYCOMB LATTICE� "ACK
TO OUR 0T�(GX3E�−X	� SYSTEM� SINCE 0T3E� �X = �	 IS A
TRIVIAL INSULATOR� WHILE 0T�(G3E� �X = ����� JACUTIN
GAITE	 IS A TOPOLOGICAL INSULATOR� IT IS EXPECTED A TRIVIAL
↔ NONTRIVIAL TOPOLOGICAL TRANSITION FOR ALLOY CONCEN
TRATIONS BETWEEN � AND �����

���� 4OPOLOGICAL LIMIT
,OWERING THE (G3E CONCENTRATION� X→ �� WILL LEAD THE
0T�(GX3E�−X	� SYSTEM TO A TOPOLOGICALLY TRIVIAL PHASE�
0T3E�� )N THIS SUBSECTION� WE WILL LOOK AT A TRIVIAL ↔
NONTRIVIAL TOPOLOGICAL TRANSITION IN LIGHT OF THE SPA
TIAL LOCALIZATION OF THE (G3E IMPURITIES �ELECTRON PER
COLATION LIMIT	�

4HE TOPOLOGICAL CHARACTER CAN BE PREDICTED BY THE
SPIN #HERN NUMBER� C(S) = C+ − C−� WITH CJ THE #HERN

�

Lowering Hg concentration, x --- > 0 , will lead the Pt(HgxSe1-x)2

system to trivial phase PtSe2 .

Realistic disordered systems, within the SQS approach for lower 
concentrations increases the computational cost(cell size >103

atoms.)   

Hg contribuition



Topological limit

* x---> 0     will lead the Pt(HgxSe1-x)2 --->        PtSe2 trivial phase

** We will look at a NON-Trivialß> Trivial  based on electron percolation limit
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OF THE Z�TOPOLOGICAL PHASE UPON THE INCLUSION OF
ALEATORY VACANCIES� THROUGH DISORDERED POTENTIALS� IN
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4HE TOPOLOGICAL CHARACTER CAN BE PREDICTED BY THE
SPIN #HERN NUMBER� C(S) = C+ − C−� WITH CJ THE #HERN

�

(Chern number, integration over a closed surface of Berry connection)
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�

>fully localized wave functions are 
eigenfunction of the position operator:

Non-zero Chern number requires the electronic states
to NOT be completely localized (necessary but not
sufficient)…. For QSH phase. 



>Mathematically it can be found a 
threshold of rigid disk concentration 
where a random distribution guarantee 
a percolation in hexagonal lattices.

Using the disks-diameters 11A aWe stimated limit 
concentration..

P.Suding and R.M.Ziff
Phys.Rev. 60, 275 (99)









D > 11.2A



>Mathematically it can be found a 
threshold of Hg concentration where a 
random distribution guarantee a 
percolation of the electrons hopping 
the Hg wave functions (i.e. a non 
localization limit)

>This sets the necessary 
topological limit for 
random alloy at x ~ 10%
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&IGURE �� 2EPRESENTATION OF THE BOND FLIPPING METHOD FOR OBTAINING REALISTIC AMORPHOUS GEOMETRIES� 4HE REGIONS WITH FLIPPED
BONDS ARE COLORED IN BLUE�

�0"%	 EXCHANGE AND CORRELATION FUNCTIONAL ;��� ��=�
REAL SPACE ENERGY GRID CUTOFF OF ��� 2Y� AN OPTIM
IZED SINGLEζ �3:	 BASIS SET� FULLY RELATIVISTIC NORM
CONSERVING PSEUDOPOTENTIALS ;��=� AND ONSITE SELF
CONSISTENT SPINnORBIT COUPLING �3/#	 ;��� ��=� 7E
HAVE VERIFIED THAT THIS FRAMEWORK ACCURATELY REPRO
DUCES THE PRISTINE BULK BAND STRUCTURE OF FLAT BIS
MUTHENE ;��= AND THE EXPERIMENTAL BAND GAP ;��=��
4HE KPOINT DENSITY IS SET TO ���¢−� IN THE TRANS
PORT DIRECTION� 7E ADD ��¢ OF VACUUM SPACE TO
AVOID SPURIOUS INTERACTIONS BETWEEN PERIODIC IMAGES
IN NONPERIODIC DIRECTIONS� 4HE ANALYSIS OF RESULTS IS
PARTIALLY AIDED BY THE SISL CODE ;��=�

5SING REAL SPACE (AMILTONIAN OBTAINED FROM
3)%34! CALCULATIONS� WE IMPLEMENT THE NON
EQUILIBRIUM 'REEN�S FUNCTION �.%'&	 ;��n��=
METHOD TO COMPUTE THE SYSTEM TRANSPORT PROPER
TIES� &OR THIS� WE CONSIDER A TWOTERMINAL SETUP WITH
A SCATTERING REGION �3	 CONNECTED TO LEADS IN THERMAL
AND ELECTROCHEMICAL EQUILIBRIUM WITH LEFT �,	 AND
RIGHT �2	 ELECTRON RESERVOIRS AS DISPLAYED IN FIGURE ��
4HE LEFT �,	 AND RIGHT �2	 LEADS ARE MODELED AS SEMI
INFINITE ARMCHAIR FLAT BISMUTHENE NANORIBBONS�

4HE SYSTEM (AMILTONIAN IS WRITTEN IN THE SPIN
RESOLVED LOCAL BASIS AS A BLOCK MATRIX�

(=




(, H,3 �

H†,3 (3 H32
� H†32 (2



 , ��	

WHERE (,/2 IS THE (AMILTONIAN OF THE SEMIINFINITE
LEFT �RIGHT	 LEAD� H,3/32 STANDS FOR THE COUPLING MAT
RIX ELEMENTS BETWEEN THE LEFT �RIGHT	 LEAD AND THE
SCATTERING REGION �3	� AND (3 IS THE SCATTERING REGION
(AMILTONIAN�

� 5SING THE OFFSITE 3/# IMPLEMENTATION� WE OBTAIN A BAND GAP
OF ���� E6 ���� E6 LARGER THAN OBSERVED IN EXPERIMENTS	� (ENCE�
ALTHOUGH THE OFFSITE IMPLEMENTATION IS USUALLY BELIEVED TO BE MOST
ACCURATE ;��=� WE FIND THAT THE ONSITE 3/# IS BETTER SUITED TO
DESCRIBE THE BAND STRUCTURE OF FLAT BISMUTHENE�

!S STANDARD ;��� ��=� IN THE LIMIT OF SMALL BIAS� THE
RETARDED 'REEN�S FUNCTION READS�

'3(%) = (%+3−(3 −Σ, −Σ2)
−�, ��	

WHERE %+ = LIMδ→�+ %+ Iδ� 3 IS THE LOCAL ORBITALS
OVERLAP MATRIX AND Σ,/2 ARE THE LEADS EMBED

DING SELFENERGIES GIVEN BYΣ, = H
†
,3G,H,3 ANDΣ2 =

H32G2H
†
32� 4HE RETARDED LEADS SURFACE 'REEN�S FUNC

TIONS G,(%) AND G2(%) ARE CALCULATED FOLLOWING THE
REFERENCES ;��� ��=�

&INALLY� THE SYSTEM LINEAR CONDUCTANCE IS GIVEN BY
THE ,ANDAUER FORMULA ;��=� NAMELY�

G =
E�

H

ˆ
D%

(
− ∂F

∂%

)
T (%) ��	

WHERE F IS THE &ERMIn$IRAC DISTRIBUTION AND T IS THE
TRANSMISSION ;��� ��= GIVEN BY�

T (%) = 4R[Γ,'3Γ2'
†
3], ��	

WHERE Γ,/2 = I[Σ,/2 −Σ†
,/2] ARE THE DECAY WIDTH

MATRICES COUPLING THE LEADS AND THE SCATTERING REGION�
!T ZERO TEMPERATURE� EQUATION ��	 IS REDUCED TO G =
(E�/H)T (%)�

5SING THE SCATTERING REGION 'REEN�S FUNCTION WE
CAN ALSO COMPUTE THE ELECTRONIC DENSITY OF STATES
�$/3	� NAMELY�

$/3(%) =
�

π
)M 4R['3(%)]. ��	

4HE COMPUTATION OF THE 'REEN�S FUNCTION '3 IS A
DAUNTING TASK FOR A REALISTIC SIZE MODEL SYSTEM WITH
A LARGE BASIS OF LOCAL ORBITALS .4 � SINCE EQUATION ��	
REQUIRES THE INVERSION OF A .4 ×.4 MATRIX� &OR DIS
ORDERED SYSTEMS� WHERE ONE IS INTERESTED IN ENSEMBLE
AVERAGES� THE COMPUTATIONAL TIME BECOMES EVENMORE
CRITICAL� 4HIS PROBLEM IS MITIGATED BY THE RECURSIVE
'REEN�S FUNCTION �2'&	 METHODS THAT EXPLORE THE FACT
THAT ONLY A SMALL FRACTION OF THE MATRIX ELEMENTS OF

�

● Siesta ab initio Hamiltonians
● LEGO-like setup
● Trans- Sampa using recursive Green’s 

functions +(SOC))

Linear conductance 
Landauer-Bu`ker formula
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• By Increasing the ribbon width, one can recovers some of
the transport channels close to Fermi level

• Less influence from the edge states
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GAP WILL PERSIST DOWN TO THE CRITICAL CONCENTRATION
XT = �.���

(ERE� OUR SIMULATIONS GOING DOWN TO X= ����
FOR THE RANDOM ALLOY CONFIRM THE PERSISTENCE OF THE
TOPOLOGICAL PHASES WITHIN THE THRESHOLD CONCENTRA
TION� )T IS WORTH POINTING OUT THAT SIMULATING REAL
ISTIC DISORDERED SYSTEMS� WITHIN THE 313 APPROACH FOR
LOWER CONCENTRATIONS �E�G� XT = �.��	� INCREASES THE
COMPUTATIONAL COSTS CONSIDERABLY� AS A CELL SIZE WITH
��� ATOMS WOULD BE NEEDED� 4HAT IS� TO ACHIEVE CON
CENTRATIONS NEAR THE PRISTINE CASE� THE SUPERCELL SIZE
NEEDED TO ACHIEVE A GOOD CORRELATION TOWARDS REAL RAN
DOM SYSTEMS MAKES THE CALCULATION OF COMPUTATION
ALLY DEMANDING PROPERTIES �AS THE TOPOLOGICAL INVARI
ANT	 UNFEASIBLE� (OWEVER� NOTE THAT THE JACUTINGAITE
PHASE �ORDERED X= ����	 IS THE +ANEn-ELE MODEL�S
REALIZATION� )T IS SHOWN THAT RANDOMLY VACANCIES ON
THE HONEYCOMB +ANEn-ELE MODEL �REPLACING (G BY
3E	 A POSSIBLE TOPOLOGICAL PHASE IS PRESERVED DOWN TO
X∼ �.� ;��=�

�� #ONCLUSION

"ASED ON ABINITIO CALCULATIONS� WE HAVE STUDIED THE
ENERGETIC STABILITY AND THE TRIVIAL→ NONTRIVIAL TOPO
LOGICAL PHASE TRANSITION IN SINGLELAYER 0T3E� MEDIATED
BY SUBSTITUTIONAL (G3E ATOMS� 0T�(GX3E�−X	� ALLOYS�
7E FOUND AN ENERGETIC PREFERENCE FOR A RANDOM DIS
TRIBUTION OF (G3E WITH X= ��% �JACUTINGAITE�S STOI
CHIOMETRY	� WITH RESPECT TO THE 0T3E� HOST RULED BY
THE CONFIGURATIONAL ENTROPY� FOR TEMPERATURES WITH
K"4> ��ME6� -EANWHILE� RANDOM ALLOYS WITH X=
��%� 0T(G3E� BECOME MORE STABLE FOR K"4> ��ME6�
!DDITIONALLY� THE ROBUSTNESS OF THE 13( PHASE AGAINST
THE RANDOM DISTRIBUTION OF (G3E SUBSTITUTIONAL ATOMS
HAS BEEN VERIFIED FOR ALLOY CONCENTRATIONS BETWEEN
��% AND ��%� )N ADDITION� BASED ON A COMBINA
TION OF ABINITIO RESULTS AND A PERCOLATION MODEL�
WE ESTIMATE A THRESHOLD CONCENTRATION� OF ABOUT ���
FOR THE TOPOLOGICAL NONTRIVIAL↔ TRIVIAL TRANSITION IN
0T�(GX3E�−X	� RANDOM ALLOYS�

$ATA AVAILABILITY STATEMENT

!LL DATA GENERATED ARE INCLUDED WITHIN THE MANU
SCRIPT� 4HE DATA THAT SUPPORT THE FINDINGS OF THIS
STUDY ARE AVAILABLE UPON REASONABLE REQUEST FROM THE
AUTHORS�
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*Based on ab initio calculations, we have studied the energetic stability
and trivial > non-trivial topological phase transition in single-layer PtSe2
mediated  by substitutional HgSe atoms, Pt(HgxSe1-x)2 alloys.

** We found an energeac preference for a random distribuaon of Hg 
with x= 25% (jacuangaite’s stochiometry), with respect to the PtSe2 host 
ruled by the configuraaonal entropy, for KT> 15meV and
Random alloys with x=50%, PtHgSe , become more stable for KT>32meV

*** The QSH phase against the random distribution of HgSe substitutional 
atoms has been verified for alloy concentration between 25% and 75%

****. With percolation model we estimated a threshold concentration of 
about 9% for topological non-trivial>trivial transition in Pt(HgxSe1-x )2
random alloys
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ABSTRACT: Monolayer PtSe2 holds great potential in extending 2D
devices functionality, but their atomic-level-defect study is still limited.
Here, we investigate the atomic structures of lattice imperfections from
point to stretched 1D defects in 1T-PtSe2 monolayers, using annular
dark-field scanning transmission electron microscopy (ADF-STEM). We
show Se vacancies (VSe) have preferential sites with high beam-induced
mobility. Diverse divacancies form with paired VSe. We found stretched
linear defects triggered by dynamics of VSe that altered strain fields,
distinct from the line vacancies in 2H-phase 2D materials. The paired VSe
stability and formation possibility of vacancy lines are evaluated by
density functional theory. Lower sputtering energy in PtSe2 than that in
MoS2 can cause larger possibility of atomic loss compared to diffusion required for creating VSe lines. This provides atomic insights
into the defects in 1T-PtSe2 and shows how a deviated 1D structure is embedded in a 2D system without losing atom lines.
KEYWORDS: Defects, Vacancies, PtSe2, 2D Materials, STEM

The advent of 2D transition metal dichalcogenides
(TMDs) offers fertile ground for harvesting unique

properties and versatile functions especially in ultrathin
(opto)electronic device applications.1−5 Much research effort
has been put in the TMDs of group VIB metal MX2, like M =
Mo, W, and X = S, Se, typically adopting the hexagonal 2H
polytype.4,6,7 The wider range of optoelectronic applications
require further exploration of novel 2D materials. The
emerging noble metal TMDs, e.g., PtX2, hold fascinating
properties such as the layer-controllable transition from metal
to semiconductor, notable carrier mobility, strong interlayer
interaction, and anisotropy.8−17 The tunable band gaps in the
range of 0.25−1.6 eV of PtX2 make up the gap between
graphene and most other TMDs, enabling their promising
utilization in the desirable mid-infrared photonics and
optoelectronics.18−21

Introducing structural defects is a significant approach for
altering the behavior of 2D materials, which can add energy
levels that perturb the electronic, magnetic, and optical
properties.22−24 The ultrathin nature of 2D materials facilitates
their structural study using advanced aberration corrected
(scanning) transmission electron microscopy [(S)TEM].
Extensive defect studies have been focusing on Mo/W-based
TMD monolayers, ranging from zero-dimensional (point
defects) to one-dimensional defects like line defects, grain
boundaries, and edges.25−30 Those defects yield varieties of
dynamical behaviors driven by electron beam, attributed to the
formation and migration ability of chalcogen vacancies,
followed by structural reconstruction. The kinetics of
chalcogen vacancies are the key to the behaviors of upper-

class defects in TMDs. It is well-demonstrated that S vacancies
can be created with relatively low S displacement threshold
(∼6.5 eV) in a MoS2 monolayer,31,32 which can quickly diffuse
and agglomerate to build linear defects that lead to a local
semiconducting-to-metallic transition.33,34 Further lattice re-
arrangement can also occur caused by the S vacancy
dynamics.35,36 These studies are mostly concentrated to the
case of 2H-phase MoX2/WX2, while the defect behaviors in
other emerging TMD systems could be distinctive which
requires continuing exploration.
Differing from the common 2H-phase structures of Mo/W-

based TMDs, the 2D PtSe2 crystal preferably adopts the 1T
polytype. Accordingly, their structural properties are supposed
to be differentiated from those in 2H-phase TMDs.
Theoretical studies have predicted the stability of point defects
and the affected electronic properties,37−39 while correspond-
ing experimental reports are very limited. Several types of point
defects were characterized by scanning tunneling microscopy
(STM).40 However, the atomic-level defect behaviors in
monolayer PtSe2 have yet to be systematically investigated,
which is crucial for exploiting the great potential of PtSe2 for
extensive device applications.
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Vacancies centers is the simplest defect but can provide 
drive exotic effects ….. as charge density waves in indium 
(In) nanowires,ferromagnetism on trasition metal  
dichalcogenides(TMD) ,transitions Metal-Insulators in 
GeSbTe( IV-VI) , negative U in Si….etc

We investigate the trivial 2D semiconductor 
PtSe2

Se vacancy formation on PtSe2 can controlled
by electron radiation…recent advances on controlled
Atomic positioning on surfaces by AFM/STM TIPS

Z2=0

experimental
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FIG. 4. (a) 5 × 5 defect supercell for 1H and 1T phases as indicated. (b) The universal schematic of band structure of each semiconducting
phase, respectively, with and without spin-orbit corrections. The green arrows indicated spin-orbit splitting of the corresponding k point.
(c) Spin-orbit splittings calculated for both 3 × 3 and 5 × 5 defect supercells. E!

g is the spin-orbit splitting at the ! point.

through the inverse participation ratio (IPR) [41] given by

IPRn,k =

N∑
i=1

|〈i|ψn,k〉|4

(∑N
i=1 |〈i|ψn,k〉|2

)2 , (2)

in which 〈i|ψn,k〉 was taken as the sum of the orbital projected
KS eigenstate for each site/atom i, such that N is the total
number of atoms in the cell. Thus, for a fully localized state
the IPR should be 1, while a delocalized one corresponds to
the limit IPR = 1/N . In Fig. 5, we show the IPR values for
each |ψn,k〉 state as a function of its eigenvalue, for the most
stable phases for chalcogen vacancies. It is worth pointing out
that those defective systems are in general semiconducting,
with the exception of NiTe2 and PdTe2, which are metallic, as
indicated by the energy gap at the Fig. 5 x axis.

In the semiconducting cases, the localized states that ap-
pear within the gap correspond to the vacancy states as
depicted in Fig. 4. The 1H phases present a slightly larger
IPR when compared to the 1T phases. Taking the 1H phase as
an example [Figs. 5(a1)–5(a3)], after the chalcogen vacancy
formation, if (in the ideal case) only the three transition-metal
orbitals (|Mi〉) neighboring the vacancy contribute equally
(with 〈Mi|ψvac−state〉 = a) to the localization, we have IPR =
3a4/(3a2)2 = 1/3. That is, the localization limit is 1/3 at
the chalcogen vacancy surroundings. As observed the IPR
values are around 0.20 which is close to the ideal limit, being
reduced due to the spread of the vacancy states to hybridized
neighboring orbitals. The same IPR limit (IPR = 1/3) is valid
for the 1T structures [Figs. 5(b1)–5(b3)]. However, despite the
vacancy states being within the band gap, the values observed
are slightly small, lying around IPR = 0.15. In this case, an
enhanced environment interaction is observed. To better visu-
alize it, in Fig. 6 we show the vacancy states squared wave
function (partial charge density) of MoS2 and PtSe2 with S
and Se vacancy, which respectively present an IPR of 0.2 and
0.1. The 1T phase forms a pyramidal-like configuration [see
Fig. 6(b)], in which the localized state spreads to opposite

surface chalcogen atoms neighboring the dangling bond Pt
atom. On the other hand, the 1H phase LDOS [see Fig. 6(a)]
are mostly localized in the M atoms close to the vacancy.
Thus, the IPR for these localized states decreases for the 1T
phase as compared to the 1H one. The spatial distribution of
those vacancy states, although with different spreads, follows
the same threefold symmetry of the vacancy structure.

FIG. 5. Inverse participation ratio (IPR) as a function of the
Bloch wave function (|ψn,k〉) energy for the chalcogen vacant sys-
tems. (a1)–(a3) The IPR for 1H-MX2 phases with M = Mo and W.
(b1)–(b3) The IPR for 1T-MX2 phases, with M = Ni, Pd, and Pt,
from S to Te, respectively.

084002-4

transition metal dichalcogenides.

Chalcogens vacancies:  universal schematic of band structure of 
each semiconducting phase, respectively, with and without spin-orbit 
corrections.

No-SOC With-SOC (5x5) With-SOC (3x3)
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FIG. 6. LDOS for the chalcogen-defected systems (a) 1H-MoS2

and (b) 1T-PtSe2, with the same isosurface of 0.007 e/Å3.

In the light of the quantification of the localization through
the IPR, the chalcogen vacancy formation energy and the band
structure dependence of the vacancy density can be readily
explained. The lowest-energy vacancy state is occupied by
two electrons, where given the localized nature the repul-
sion term of the electrons in such state is relevant to the
total vacancy formation energy. For instance, we can estimate
such repulsion energy (e2/4πεr) given the average spatial
distribution of the vacancy states on MoS2 and PtSe2 to be
∼4.5 eV and ∼3.0 eV, respectively. Such interpretation alone,
given the IPR obtained for each system, is able to predict the
order of the vacancy formation energy for each TM being
Mo > W > Pt > Pd > Ni. Additionally, the more localized
nature of Mo, W, and Pt vacancy states all above IPR = 0.1
dictates that the adjacent vacancies will have lower interaction
not changing the formation energy significantly for 5 × 5 and
3 × 3 cells. However Ni and Pd, with their IPR < 0.1, indicate
a stronger interaction between adjacent vacancies reducing the
formation energy for higher vacancy densities. Note particu-
larly the 1T phases with Te [Fig. 5(b3)], which presents the
lower IPR values for the vacancy states, and presents also
the greater variability on the chalcogen vacancy formation
energy; see Fig. 3(b). A similar analysis can be done fol-
lowing the band structure. Here, the 1T phases allowing a
longer range of interaction between adjacent vacancies leads
to higher dispersive states when compared with the 1H struc-
ture [Fig. 4(b)]. That is, the hopping between neighboring
vacancies—dictating the band dispersion—in the positions
#r1 and #r2 is given by t =

∫
ψ1(#r − #r1)Hψ2(#r − #r2)dv; for

perfectly localized vacancy states ψi(#r − #ri ) = δ(#r − #ri ) the
hopping term could vanish. Therefore, the localization nature
impacts not only the formation energy but also gives insights
on associated electronic properties—for instance, on the topo-
logical properties of defected TMDs. In a previous work [18],
a topological phase in defected PtSe2 and MoS2 was observed,
ruled by the intervacancy interaction and therefore dependent
on the vacancy density. Our results in the present work in-
dicate that going toward TMDs with less localized vacancy
states could allow the topological insulating phase to arise in
lower defect concentrations. Other topological phases induced
by defects, for instance the topological Anderson phase, will
depend on this localization degree as well. Here, our work
draws attention to this characteristic of TMD defect states,

TABLE I. Magnetic moments, m (µB), induced in the most
stable phases with the introduction of vacancies. The last col-
umn, %EAFM−FM (meV/vacancy), is the energy difference between
the antiferromagnetic (AFM) and ferromagnetic (FM) phases, with
%EAFM−FM < 0 indicating the AFM phase being more stable.

MX2 Vacancy m %EAFM−FM

1H-MoSe2 Mo 4.00
1H-MoTe2 Mo 2.00
1H-WTe2 W 1.96
1T-NiS2 Ni 4.00 19
1T-PdS2 Pd 4.00 17
1T-PdSe2 Pd 4.00 43
1T-PtS2 Pt 4.00 −54
1T-PtSe2 Pt 4.00 −33

which allows the interpretation and intelligent design of func-
tional systems.

E. Magnetism

Although less energetically favorable, TM vacancies can
also be found on TMDs, where the introduction of such va-
cancies can induce a local net magnetic moment. In Table I
we summarize the systems presenting a net magnetic moment
after a TM vacancy is formed, while the ones not present on
the table did not present any magnetic properties. After the
TM vacancy is formed, localized magnetic moments arise on
the neighboring chalcogen atoms. Here a ferromagnetic (FM)
phase can be stabilized for some explored systems, being the
only observed phase for the 1H structure. Interestingly, some
of the 1T systems can present an antiferromagnetic (AFM)
arrangement of such chalcogen magnetic moments, which can
be more stable than the ferromagnetic, as already observed
for 1T -PtSe2 [12]. Aware of this behavior, we probed this
antiferromagnetic configuration for our 1T -based systems.
The systems which presented a possible antiferromagnetic
phase were 1T -NiS2, 1T -PdS2, 1T -PdSe2, 1T -PtS2, and 1T -
PtSe2. However, as shown in Table I, for Ni- and Pd-based
systems the antiferromagnetic phase (%EAFM−FM < 0) was
not the most stable. On the other hand, for Pt-based systems,
we found more stable antiferromagnetic phases for 1T -PtS2
and 1T -PtSe2 systems with an energy difference of about
−54 meV/vacancy and −33 meV/vacancy, respectively. That
is, such values for the AFM phase together with the FM
of 1T -PdSe2 (with %EAFM−FM = 43 meV/vacancy) dictate
such magnetic configurations to be robust close to the ambient
temperature.

IV. CONCLUSIONS

We systematically investigated the energetic and electronic
properties of a series of two-dimensional transition-metal
dichalcogenides (MX2, with M = Ni, Mo, Pd, W, and Pt, and
X = S, Se, and Te) presenting native point defects, namely
chalcogen and transition-metal vacancies, in different struc-
tural phases. Here, we found the chalcogen vacancy as the
most stable for all systems, with lower formation energy in the
1T phase (Ni, Pd, and Pt systems) than those in the 1H phase
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FIG. 1. (a) 2D TMD (MX2) and 2D and 3D M2NX3 atomic struc-
ture, (b) lattice parameter, (c) bucking distance, (d) formation energy
comparison between the TMD and M2NX3, (e) ternary MNX energy
above hull for M2NX3, (f) convex hull for Pd2HgSe3, and (g) cleavage
energy with the dashed line indicating the graphite cleavage barrier.

are rotated by 60◦ with respect to each other, giving rise to
a buckled hexagonal lattice. At the equilibrium geometry, the
lattice constants of the M2NX3 structures are practically inde-
pendent of the transition metal, i.e., nearly the same as those of
the hosts (MX2). For instance, the equilibrium lattice constants
of Pt2NSe3, for N = Zn, Cd, and Hg, differ by less than 0.9%,
compared with that of 1T PtSe2. Such independence is due to
the N−M−N buckled structure [Fig. 1(a)] acting as a source
of strain relief induced by the foreign (N) atom. As shown
in Fig. 1(c), the vertical buckling (dz) of the N−M−N bonds
presents larger (lower) values for X = S (Te).

The energetic stability of the jacutingaitelike structures can
be examined by comparing the formation energy of M2NX3
with the one of its respective (energetically stable) MX2 host,
!TMD = "[M2NX 3] − "[MX2] [Fig. 1(d)]. Here the forma-
tion energy is given by a total energy difference between the
compound x final system (E [x]) and the upper limit of the

chemical potentials of its isolated compounds (µbulk), namely,

"[x] = E [x] −
∑

i

niµ
bulk
i ,

where ni indicates its number of atoms of the species i = M,
N , and X . Our !TMD results reveal that the jacutingaitelike
structures are quite likely to occur for X = Se and Te. Here,
we found negative values of !TMD for the former, while for
X = Te it increases by less than 0.1 eV/atom [Fig. 1(d)].
Meanwhile, for X = S the M2NX3 structure is less stable than
that of its host by about 0.4 eV/atom.

Further structural stability of the jacutingaitelike M2NX3
structures has been examined through convex energy hull
analysis, comparing their formation energies (") with other
MNX ternary phases extracted from the Materials Project
database [43,46,47]. We found M2NX3 compounds being a
node point in the convex hull (zero energy above the convex
hull, Ea-h = 0.0 eV/atom [35]) showing its experimental sta-
bility [Fig. 1(e)]. For instance, in Fig. 1(f), Pd2HgSe3 lies in
a convex node with a formation energy of −0.18 eV/atom.
Additionally, all M2HgSe3 (M = Ni, Pd, and Pt) have Ea-h =
0.0, as well as Pd2HgTe3, Pt2CdTe3, and Pt2HgTe3. For the
Se- and Te-based materials that have nonzero energy above
the hull we found Ea-h < 0.18 eV/atom, which indicates its
high stability [48]. For instance, taking Pt2ZnTe3 as a case of
study (Ea-h = 0.08 eV/atom), we have calculated its mono-
layer phonon dispersion [35], where its dynamical stability
was confirmed by the absence of negative frequencies. Addi-
tionally, for the higher Ea-h systems, X = S-based compounds,
their negative values of formation energies, " < 0 [35], in-
dicate that they can be experimentally stabilized throughout
specific synthesis routes and/or substrate support. Although
the SOC has a stabilizing role in the jacutingaite phonon
dispersion [26], we see that it changes the formation energy
by ∼7 meV/atom, which does not change our conclusions.

The cleavage energy (δ) [49] is another important piece of
structural information for the top-down synthesis of 2D sys-
tems. We found that the M2NX3 bulk phase presents cleavage
energies in the range of other experimentally exfoliated ma-
terials [50]. For instance, jacutingaite has a cleavage energy,
δ = 0.46 J/m2 comparable with that of graphene exfoliated
from graphite, δ = 0.39 J/m2 [dashed line in Fig. 1(g)] [51].
When we compare the calculated cleavage energy and the
vertical buckling of the N−M−N bonds [dz in Fig. 1(c)], it
is noticeable that (i) for a given transition metal pair M-N the
δ is proportional to dz, being larger for X = S and lower for
X = Te, this is in agreement with Ref. [32], where the authors
verified that the N atoms are responsible for the interplane
bound of the M2NX3 system, as shown in Fig. 1(a) for the
M2NX3 3D structure. Indeed, taking the Cd and Hg systems,
which have a similar bucking distance, the former presents
a stronger interlayer bond ruled by the bonding energy of
Cd-X being ∼60% greater than that of Hg-X . By contrast, for
Zn, given its lower buckling distance, an interplay between
the van der Waals interaction (of the TMD host) and the Zn
interlayer chemical bond is present. The former dominates for
lower dz, leading to a weaker interlayer bond. (ii) For X = Te
and N = Zn, the cleavage energy is always lower than that
of graphene, where (iii) the cleavage energy of Pt2HgTe3 is
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This paper is organized as follows. In Sec. II we present
the computational methods used in this study for the molec-
ular dynamics and electronic structure calculations. We also
propose a 3D generalization of the standard procedure to
compute the spin Bott in 2D systems. In Sec. III we discuss the
structural, electronic, and topological properties of amorphous
Bi2Se3. This analysis serves as a basis to study the structural
and topological phase transition of the material as a function
of the temperature. We conclude by summarizing our findings
and presenting an outlook in Sec. IV.

II. COMPUTATIONAL METHODS

We generate the amorphous structures with ab initio molec-
ular dynamics calculations (AIMD) using density functional
theory (DFT) [52–54] as implemented in the Vienna ab ini-
tio Simulation Package (VASP) [55,56]. The structures are
generated by the usual melt-and-quench procedure. Starting
from the crystalline structure with a 135 atom supercell, we
heat the system up to 2000 K. After annealing at 2000 K
for 10 ps, we quench the system from 2000 to 300 K in
10 ps and then anneal it once more at 300 K for another
10 ps. In the AIMD simulations, we use 2 fs as the time
step for integrating the equations of motion using the Nosé-
Hoover thermostat [57–59] for generating the NVT ensemble.
After the final annealing, we perform a structure and vari-
able cell relaxation until the Hellman-Feynman [60] forces
are less than 2.5×10−2 eVÅ−1. The electronic exchange
and correlation interaction is treated by generalized gra-
dient approximation [61] with the Perdew-Burke-Ernzerhof
(PBE) [62] exchange and correlation functional. We use the
projector augmented wave (PAW) [63] pseudopotentials for
describing the ionic cores. The calculations are performed
with a 300 eV kinetic energy cutoff for the plane-wave ex-
pansion and using only the ! point for sampling the Brillouin
zone (BZ). Density of states (DOS) calculations are calculated
with a 3×3×1 !-centered Monkhorst-Pack k-point grid. The
spin-orbit coupling (SOC) interaction was included in all DOS
and eigenvalues calculations. In Sec. III we discuss the results
for a representative structure obtained with this procedure.
The results for a similar amorphous structure obtained with
NVT and also NPT ensemble can be found in the Supplemen-
tal Material [64].

To deepen our understanding of the topological nature of
the amorphous structures, we extract a local basis Hamiltonian
based on pseudoatomic orbitals (PAOs) as implemented in the
PAOFLOW code [65–68]. The PAO Hamiltonian is built from
the projection of the Kohn-Sham (KS) Bloch states onto the
basis of Bi-spd orbitals and Se-sp orbitals from the pseudopo-
tentials. The effective Hamiltonian reads

H =
∑

i j

∑

µν

∑

σ

tµν
i j c†

iµσ c jνσ , (1)

where the operator c†
iµσ (c jνσ ) creates (annihilates) an electron

with spin projection σ at the atomic site i ( j) and orbital µ
(ν). The hopping matrix elements tµν

i j are obtained directly
from the projection of KS states onto PAO orbitals without
parameter fitting. The KS states are obtained from DFT cal-
culations based on the Quantum Espresso [69,70] code with
PBE exchange and correlation functional, 80 Ry for the wave-

function kinetic energy cutoff. For computational efficiency,
we exclude the Bi-d orbitals and include SOC on the PAO
Hamiltonian via an effective approximation [71], namely,

HSOC =
∑

i

∑

µν

∑

σσ ′

λi〈iµσ |L · S|iνσ ′〉c†
iµσ c jνσ ′ , (2)

where the L and S are the orbital and spin angular momentum
operators. The SOC parameter λ for the Bi-p and Se-p orbitals
are λBi = 1.615 eV and λSe = 0.320 eV, which accurately
reproduce the bulk band structure with self-consistent SOC;
see Ref. [64].

The classification of TIs without translational symmetry,
like amorphous systems, requires a real-space invariant since
the reciprocal-space Chern number is undefined. In this paper
we use the spin Bott index, a standard invariant of this kind.
The Bott index indicates obstructions to deform the wave
functions of the filled states of a given system into completely
localized orbitals, which is equivalent to reciprocal-space in-
variants in the infinite-system limit [72]. We use the PAO
Hamiltonians to implement and compute the spin Bott in-
dex [72–75].

For that purpose, we put forward a 3D generalization of
the standard method to compute the Bott index restricted to
address 2D systems. For the sake of clarity, let us begin by
briefly reviewing how the spin Bott index is calculated. First,
one constructs the projection operator of the occupied states,

P =
Nocc∑

n

|ψn〉〈ψn|. (3)

Next, one decomposes the occupied space projector into
spin-up (+) and spin-down (−) sectors by constructing the
spin operator projected onto the occupied states, namely,

Pz = PŝzP, (4)

where ŝz = h̄
2 σz is the spin operator expressed, as standard, in

terms of the Pauli matrix σz. The projector of the occupied
spin-up (+) and spin-down (−) sectors are constructed from
the eigenstates of Pz as

P± =
Nocc/2∑

n

|φ±
n 〉〈φ±

n |, (5)

where |φ±
n 〉 are the eigenstates of Pz with eigenvalues S±.

In the case of 2D systems, for each spin sector one then
constructs the projected position operators

U± = P±ei2πX P± + (I − P±), (6)

V± = P±ei2πY P± + (I − P±), (7)

where X and Y are diagonal matrices with the x and y com-
ponents of the spatial coordinate of each orbital site rescaled
to unity. To improve the numerical stability of the spin Bott
index [74,75], it is useful to use the singular value decompo-
sition for the projected position operators U±, V±. The Bott
index of each spin sector is defined as [72–77]

B± = 1
2π

Im{Tr[log(V±U±V †
±U †

±)]}. (8)
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Finally the spin Bott index is defined as

Bs = 1
2 (B+ − B−), (9)

similar to the spin Chern number [78–82]. It is important
to stress that the error of the the (spin) Bott index scales
with system size as L−1 [83]. This means that one needs
to consider large supercells in order to obtain a converged
calculation of the topological invariant. For our amorphous
systems, obtained using large simulation cells with accurate
PAO Hamiltonians, this can be computationally demanding.
Additionally, we note that the formulation of the spin Bott
index is valid in the presence of spin-mixing terms such as
strong SOC and Rashba terms, as long as there is a gap in
the spectra of the eigenvalues of Pz, i.e., the eigenvalues are
close to the eigenvalues of the spin matrix ŝz, ±h̄/2 and zero,
and exists a gap between those [75], which is our case for
amorphous insulators.

The above formulation of the spin Bott index is defined for
2D systems. For 3D systems we propose the use of a spin Bott
index vector, similar to the Z2 invariants for 3D TIs [9,84],
that is, Bs = (Byz

sx , Bxz
sy

, Bxy
sz ), where Bi j

sk is the spin Bott index
using the spin operator ŝk = h̄

2 σk and Xi, Xj position matrices,
with i, j, k = {x, y, z} for constructing the spin operator pro-
jected onto occupied states, Eq. (4), and the projected position
operators, Eqs. (6) and (7), respectively. For strong 3D TIs all
three indices are equal to unity and weak TIs have at least
one of the three indices equal to zero. Therefore, the spin
Bott index vector corresponds to the surface that displays
the topological surface states. In the case of an amorphous
phase, all surfaces are equivalent (isotropic) and a single index
is sufficient to characterize the topological phase. Moreover,
we confirmed the results of all spin Bott index calculations
by calculating the Z2 invariant. As expected, these invariants
agree.

We also use the PAO Hamiltonians to study the energy
dispersion of the surface states by means of the spec-
tral function A(k,ω) computed from the imaginary part
of the semi-infinite surface Green’s function A(k,ω) =
− 1

π
limη→0+ Im Tr Gs(k,ω + iη). The Green’s function Gs of

the top and bottom surfaces are obtained recursively by the
Sancho et al. [85] algorithm as implemented in the Wannier-
Tools package [86].

III. RESULTS

A. Amorphous Bi2Se3

1. Structural properties

The well-known Bi2Se3 crystalline phase belongs to the
rhombohedral crystal structure, with space group R3̄m, and
is composed of inversion symmetric quintuple layers (QLs)
with alternating Se and Bi atoms forming a triangular lattice;
see Fig. 1(a). In the crystalline phase, the interaction between
QLs is of the van der Waals type. Within each QL, the Bi
atoms are surrounded by Se atoms forming octahedral local
environments [12].

We start by analyzing the atomic structures obtained for
the amorphous Bi2Se3 (a-Bi2Se3). Figure 1(a) shows both the
pristine structure of Bi2Se3 and an a-Bi2Se3 atomic structure
obtained after the melt-quench-anneal procedure. The latter

FIG. 1. Structure and partial PDF of a-Bi2Se3. (a) Structure of
crystalline (top) and amorphous (bottom) Bi2Se3 showing Bi-Se
bonds. (b) Total and partial PDF g(r) of a-Bi2Se3. The first peak of
the partial PDF is located at 3.20 Å for Bi-Bi, 2.88 Å for Bi-Se, and
2.41 Å for Se-Se. The second peaks for Bi-Bi and Se-Se are located
at 4.12 and 4.05 Å, respectively. The dashed vertical lines mark the
bond cutoff. The vertical lines in the total PDF correspond to the peak
position of the partial PDF of crystalline Bi2Se3.

shows no evidence of the QLs found in the crystalline phase.
In Fig. 1(b) we report the total and partial pair distribution
function (PDF) of a-Bi2Se3. As expected for an amorphous
phase, the PDF converges to unity for large distances, losing
peak coherence, and indicating long-range disorder [87,88].
For small r, we observe two defined peaks for the first and
second-neighbor pairs. In the amorphous phase we obtain
a small number of homopolar Bi-Bi and Se-Se bonds, as
evidenced by the partial PDFs of Fig. 1(b), and a majority
of Bi-Se bonds. Although the partial PDF of Se-Se bonds
shows a small peak at ≈2.2 Å, the first well-defined peak is
attributed to Bi-Se pairs at 2.88 Å and the second peak to
longer Bi-Bi and Se-Se bonds near 4 Å. Compared with the
crystalline peaks, marked by gray lines in the total PDF, the
Bi-Se bonds show no significant shift from the crystalline val-
ues. For the crystalline phase, the Se-Se pairs occur between
different QLs, while for a-Bi2Se3 we find a small number
of Se-Se bonds near 2.41 Å and a second-neighbor peak at
larger distances, 4.05 Å. For Bi-Bi bonds we observe a similar
scenario, with the bonds being between second neighbors
within each QLs in the crystalline phase; however, in a-Bi2Se3
the calculation gives a small number of homopolar bonds at
3.20 Å and a stronger second peak located at 4.12 Å.

The distribution of coordination numbers around the Bi
and Se atoms is shown in Fig. 2. In the crystalline phases
there are only sixfold coordinated Bi atoms while three-
fold (33.3%) and sixfold coordinated (66.7%) Se atoms. In
the amorphous phase we find a larger number of fivefold
coordinated Bi atoms (57.4%), indicating a defective local
environment for Bi atoms. We also observe a larger number
of threefold coordinated Se atoms (51.8%), while there is
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This paper is organized as follows. In Sec. II we present
the computational methods used in this study for the molec-
ular dynamics and electronic structure calculations. We also
propose a 3D generalization of the standard procedure to
compute the spin Bott in 2D systems. In Sec. III we discuss the
structural, electronic, and topological properties of amorphous
Bi2Se3. This analysis serves as a basis to study the structural
and topological phase transition of the material as a function
of the temperature. We conclude by summarizing our findings
and presenting an outlook in Sec. IV.

II. COMPUTATIONAL METHODS

We generate the amorphous structures with ab initio molec-
ular dynamics calculations (AIMD) using density functional
theory (DFT) [52–54] as implemented in the Vienna ab ini-
tio Simulation Package (VASP) [55,56]. The structures are
generated by the usual melt-and-quench procedure. Starting
from the crystalline structure with a 135 atom supercell, we
heat the system up to 2000 K. After annealing at 2000 K
for 10 ps, we quench the system from 2000 to 300 K in
10 ps and then anneal it once more at 300 K for another
10 ps. In the AIMD simulations, we use 2 fs as the time
step for integrating the equations of motion using the Nosé-
Hoover thermostat [57–59] for generating the NVT ensemble.
After the final annealing, we perform a structure and vari-
able cell relaxation until the Hellman-Feynman [60] forces
are less than 2.5×10−2 eVÅ−1. The electronic exchange
and correlation interaction is treated by generalized gra-
dient approximation [61] with the Perdew-Burke-Ernzerhof
(PBE) [62] exchange and correlation functional. We use the
projector augmented wave (PAW) [63] pseudopotentials for
describing the ionic cores. The calculations are performed
with a 300 eV kinetic energy cutoff for the plane-wave ex-
pansion and using only the ! point for sampling the Brillouin
zone (BZ). Density of states (DOS) calculations are calculated
with a 3×3×1 !-centered Monkhorst-Pack k-point grid. The
spin-orbit coupling (SOC) interaction was included in all DOS
and eigenvalues calculations. In Sec. III we discuss the results
for a representative structure obtained with this procedure.
The results for a similar amorphous structure obtained with
NVT and also NPT ensemble can be found in the Supplemen-
tal Material [64].

To deepen our understanding of the topological nature of
the amorphous structures, we extract a local basis Hamiltonian
based on pseudoatomic orbitals (PAOs) as implemented in the
PAOFLOW code [65–68]. The PAO Hamiltonian is built from
the projection of the Kohn-Sham (KS) Bloch states onto the
basis of Bi-spd orbitals and Se-sp orbitals from the pseudopo-
tentials. The effective Hamiltonian reads

H =
∑

i j

∑

µν

∑

σ

tµν
i j c†

iµσ c jνσ , (1)

where the operator c†
iµσ (c jνσ ) creates (annihilates) an electron

with spin projection σ at the atomic site i ( j) and orbital µ
(ν). The hopping matrix elements tµν

i j are obtained directly
from the projection of KS states onto PAO orbitals without
parameter fitting. The KS states are obtained from DFT cal-
culations based on the Quantum Espresso [69,70] code with
PBE exchange and correlation functional, 80 Ry for the wave-

function kinetic energy cutoff. For computational efficiency,
we exclude the Bi-d orbitals and include SOC on the PAO
Hamiltonian via an effective approximation [71], namely,

HSOC =
∑

i

∑

µν

∑

σσ ′

λi〈iµσ |L · S|iνσ ′〉c†
iµσ c jνσ ′ , (2)

where the L and S are the orbital and spin angular momentum
operators. The SOC parameter λ for the Bi-p and Se-p orbitals
are λBi = 1.615 eV and λSe = 0.320 eV, which accurately
reproduce the bulk band structure with self-consistent SOC;
see Ref. [64].

The classification of TIs without translational symmetry,
like amorphous systems, requires a real-space invariant since
the reciprocal-space Chern number is undefined. In this paper
we use the spin Bott index, a standard invariant of this kind.
The Bott index indicates obstructions to deform the wave
functions of the filled states of a given system into completely
localized orbitals, which is equivalent to reciprocal-space in-
variants in the infinite-system limit [72]. We use the PAO
Hamiltonians to implement and compute the spin Bott in-
dex [72–75].

For that purpose, we put forward a 3D generalization of
the standard method to compute the Bott index restricted to
address 2D systems. For the sake of clarity, let us begin by
briefly reviewing how the spin Bott index is calculated. First,
one constructs the projection operator of the occupied states,

P =
Nocc∑

n

|ψn〉〈ψn|. (3)

Next, one decomposes the occupied space projector into
spin-up (+) and spin-down (−) sectors by constructing the
spin operator projected onto the occupied states, namely,

Pz = PŝzP, (4)

where ŝz = h̄
2 σz is the spin operator expressed, as standard, in

terms of the Pauli matrix σz. The projector of the occupied
spin-up (+) and spin-down (−) sectors are constructed from
the eigenstates of Pz as

P± =
Nocc/2∑

n

|φ±
n 〉〈φ±

n |, (5)

where |φ±
n 〉 are the eigenstates of Pz with eigenvalues S±.

In the case of 2D systems, for each spin sector one then
constructs the projected position operators

U± = P±ei2πX P± + (I − P±), (6)

V± = P±ei2πY P± + (I − P±), (7)

where X and Y are diagonal matrices with the x and y com-
ponents of the spatial coordinate of each orbital site rescaled
to unity. To improve the numerical stability of the spin Bott
index [74,75], it is useful to use the singular value decompo-
sition for the projected position operators U±, V±. The Bott
index of each spin sector is defined as [72–77]

B± = 1
2π

Im{Tr[log(V±U±V †
±U †

±)]}. (8)
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Crystalline Bi2Se3 is one of the most explored three-dimensional (3D) topological insulators with a 0.3 eV
energy gap making it promising for applications. Its amorphous counterpart could bring to light new possibilities
for large scale synthesis and applications. Using ab initio molecular dynamics simulations, we have studied
realistic amorphous Bi2Se3 phases generated by different processes of melting, quenching, and annealing.
Extensive structural and electronic characterizations show that the melting process induces an energy gap
decrease ruled by growth of the defective local environments. This behavior dictates a weak stability of the
topological phase to disorder, characterized by the spin Bott index. Interestingly, we identify the occurrence
of topologically trivial surface states in amorphous Bi2Se3 that show a strong resemblance to standard helical
topological states. Our results and methods advance the search of topological phases in 3D amorphous solids.
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I. INTRODUCTION

Topological insulators (TIs) are quantum states of mat-
ter with an insulating energy gap in the bulk and metallic
boundary states that are robust against the presence of disor-
der [1–3]. Topological phases of matter in both two- (2D) and
three-dimensional (3D) systems gained significant interest
due to their exotic properties and potential applications [4–8].

Topological properties of 3D materials have been predicted
and observed in Bi1−xSbx alloys [9–11] and the family of
layered chalcogenides Bi2Se3, Bi2Te3, and Sb2Te3 materi-
als [12–15]. Layered Bi and Sb chalcogenides have been
extensively studied due to their enhanced thermoelectric prop-
erties [16–20]. Several works have demonstrated a variety
of interesting electronic properties of the topological phases
in these materials: Doping to control of the electronic struc-
ture and surface states [21–24], alloying induced topological
phase transition [25], temperature effects in the electronic
structure and temperature-induced phase transition [26,27],
spin-polarized transport and spin-orbit torque [28–30], and
unique properties of heterostructures [31–35]. Additionally,
compounds belonging to the class of chalcogenides alloys
are candidates for optical data storage and electronic phase
change memories due to a fast transition between crystalline
and amorphous phases [36,37]. For instance, detailed the-
oretical investigation of the structure of amorphous GeTe,
Ge2Sb2Te5 (GST), Sb2Te3, Bi2Te3, and In3SeTe2 relate the
speed of this transition to the volume of nanocavities and
defective local environments enhancing diffusivity [38–42].
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Recent works investigating 2D and 3D model Hamiltoni-
ans have shown that noncrystalline and amorphous systems
can also support topological phases [43–46]. These findings
have the potential to vastly expand the field, provided one
finds material system realizations.

In 2D, amorphous bismuthene has been predicted to dis-
play a robust quantum spin Hall topological phase [47,48].
In 3D, the scenario is less clear. Amorphous phases of the
rhombohedric A2X3 materials, e.g., Sb2Te3 [40], Bi2Te3 [41],
Bi2Se3 [49], have been experimentally achieved. In amor-
phous Bi2Se3, experimental evidence suggests a surface Dirac
cone with helical spin texture [50]. In Sb2Te3, the topo-
logical phase vanishes with disorder, and spin correlations
dominate the charge transport [51]. However, the topologi-
cal nature of amorphous Bi2Se3 family of materials has not
been theoretically addressed and even less so a topological-
trivial phase transition driven by the structural phase transition
between the crystalline and the amorphous phases in these
materials.

In this work, we use ab initio molecular dynamics to
generate realistic amorphous Bi2Se3 (a-Bi2Se3) systems and
study their structural and electronic properties, as well as
their topological classification. We assess the coordination
and quality of the local environments of the Bi and Se atoms
and observe a growing number of defective environments with
increasing temperature. Our main finding is that the topo-
logical properties of Bi2Se3 are not robust against structural
disorder: The growth of defective octahedral environments
drives a topological phase transition. More specifically, our
simulations indicate that the crystalline-amorphous transition
at T ≈ 1600 K is accompanied by a topological-trivial phase
transition. We also show that near the transition point, disor-
dered Bi2Se3 structures have surface states that resemble the
helical Dirac cone of TIs.
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For a  non-periodicity of the random alloy, we have computed a real space invariant :
Spin Bott-index, which is equivalent to the spin-Chern number.
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systems. The applicability of the spin Bott index is confirmed by analyzing the periodic and disorder Kane-Mele
models. As an example of nonperiodic systems, we systematically investigate the QSH effect in a Penrose-type
quasicrystal lattice (QL). We characterize the nontrivial electronic topology of the QL by directly calculating
the spin Bott index. In addition, the topological edge states, the localization of wave functions, and quantized
transport signatures are also studied in detail.
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I. INTRODUCTION

Since the discovery of Z2 topological insulators by Kane
and Mele [1,2], several methods have been proposed to cal-
culate the Z2 index. In particular, for systems with inversion
symmetry, Fu and Kane simplify the calculation of Z2 by con-
sidering the parity of occupied states at time-reversal-invariant
points in the Brillouin zone [3]. For general time-reversal-
invariant systems, they also derive an efficient formula for
the Z2 index which is expressed as an integral involving the
Berry connection and Berry curvature [4,5]. Soluyanov et al.
and Yu et al. develop an effective method to determine Z2
index based on the evolution of hybrid Wannier charge centers
[6,7]. In addition, a spin Chern number was also suggested
to characterize the Z2 topological order [8–10]. However, all
these methods are only applicable for periodic systems. For
nonperiodic systems, an effective numerical determination
of Z2 index is more challenging. So far, several numerical
methods have been proposed for nonperiodic systems. For ex-
ample, Kane and Mele propose to determine the Z2 index by
a certain Pfaffian with twisted boundary condition [1,11–13].
Another method is based on scattering matrix theory, in which
the Z2 index is defined by the scattering matrices at the Fermi
level without the knowledge of the full spectrum [14–16].
Ringel and Kraus provided an algorithm for determining the
Z2 index, which can be extracted from a local equal-time
ground-state correlation function [17]. Loring and Hastings
extended the definition of Z2 index as the Kitaev’s Z/2
index based on the theory of almost commuting matrices
[18–20]. Loring further derived formulas and algorithms for
Kitaev’s invariants of different classes in the periodic table for
topological insulators and superconductors [21–23] for finite
disordered systems on lattices with boundaries [24]. Mean-
while, the concept of spin Chern number is also extended
to disordered system based on the noncommutative theory of
Chern number [25,26].

*Corresponding author: fliu@eng.utah.edu

In this work, we define an alternative topological invariant,
i.e., the spin Bott index, to determine the quantum spin Hall
(QSH) state in both periodic and nonperiodic systems. It is
based on previous works on Bott index [27–29] and spin
Chern number [8–10,25,26]. The equivalence of the spin
Bott index and the Z2 invariant is checked using the Kane-
Mele model. To test the applicability and effectiveness of
our numerical algorithm, we further study the topological
Anderson insulator state in the disorder Kane-Mele model.
As an example, we systematically investigate the QSH effect
in a Penrose-type quasicrystal lattice (QL). The QSH state
is directly determined by calculating the spin Bott index. In
addition, we study the topological edge states, the localization
of wave functions, and transport properties which further
confirm the nontrivial topological character of the QL.

This paper is organized as follows. In Sec. II, we derive the
general properties of spin Bott index. In Sec. III, we introduce
the details of the model that will be used for illustrative
calculations of QLs. The numerical results and discussion of
QSH effect in QLs are presented in Sec. IV, and we end with
a summary in Sec. V.

II. BOTT INDEX AND SPIN BOTT INDEX

In this section, we first present the calculation details about
the Bott index and the spin Bott index we proposed (Sec. II A).
Then, we use the Haldane model as an example to illustrate
the relationship between the Bott index and the Chern number
in Sec. II B. Next, we use the Kane-Mele model to illustrate
the equivalence of the spin Bott index and the Z2 invariant
in Sec. II C. Finally, we calculate the spin Bott index of our
model in a disordered lattice in Sec. II D, demonstrating the
applicability of spin Bott index to nonperiodic systems.

A. Method of calculation

The method of calculating the Bott index has already
been explained in the literature [18,19,24,30,31]. First, one
constructs the projector operator of the occupied states below
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a given gap

P =
Nocc∑

i

|ψi〉〈ψi |, (1)

where |ψi〉 is the wave function of the ith state with eigenvalue
εi . Next, one calculates the projected position operators

U = Pei2πXP, (2)

V = Pei2πY P, (3)

where X and Y are the rescaled coordinates which are defined
in the interval [0,1). The Bott index, which measures the
commutativity of the projected position operators [27–29,32],
is given by

B = 1
2π

Im{tr[log(V UV †U †)]}. (4)

The Bott index is proved to be equivalent to Chern number
[33]. Therefore, it serves as a topological invariant to distin-
guish topological nontrivial from trivial states.

Given the method of calculating the Bott index, now we
give a general construction of the spin Bott index. One begins
by introducing a projected spin operator

Pz = P ŝzP, (5)

where ŝz = h̄
2 σz is the spin operator (σz is the Pauli matrix).

For a spin-conserving model, ŝz commutes with the Hamil-
tonian H and Pz, the Hamiltonian as well as eigenvectors
can be divided into spin-up and spin-down sectors. Thus,
the eigenvalues of Pz consist of just two nonzero values
± h̄

2 . For systems without spin conservation (for example, the
Kane-Mele model with nonzero Rashba terms which will
be discussed later), the ŝz and H no longer commute. The
spectrum of Pz spreads toward zero. However, as long as
the spin-mixing term is not too strong, the eigenvalues of Pz

remain two isolated groups which are separated by zero. Since
the rank of Pz is Nocc, the number of positive eigenvalues
equals to the number of negative eigenvalues, which is one
half of Nocc. The corresponding eigenvalue problem can be
denoted as

Pz|±φi〉 = S±|±φi〉. (6)

In this way, one can construct new projector operators

P± =
Nocc/2∑

i

|±φi〉〈±φi |, (7)

which satisfy P = P+ ⊕ P−, and projected position operators

U± = P±ei2πXP± + (I − P±), (8)

V± = P±ei2πY P± + (I − P±), (9)

for two spin sectors, respectively.
It is noted that the complementary projectors Q± = 1 −

P± are added into the definition of projected position op-
erators [34], which does not change the final results but
makes the numerical algorithm more stable. The Bott index
measures the commutativity of a pair of almost commuting
and almost unitary matrices, which can distinguish the pairs of

commuting matrices close to commuting pairs from those are
far from commuting pairs [18,20,29]. Adding the complemen-
tary projectors Q± into Eqs. (8) and (9) makes the position
operator close to a unitary matrix, which is useful in numerical
calculations. For a better convergency of the numerical algo-
rithm, the product U±V±U

†
±V

†
± should be unitary. Therefore,

det(U±V±U
†
±V

†
±) = 1 and the spectrum of log(U±V±U

†
±V

†
±)

is purely imaginary, then the Bott index is a real integer [33].
To further increase the stability of the numerical algorithm,
one performs a singular value decomposition (SVD) M =
Z!W † for the projected position operators U± and V±, where
Z and W are unitary and ! is real and diagonal. Then, one can
identify the “unitary part” M̃ = ZW † as the new projected
position operators which are unitary now. Mathematically,
the SVD process is equivalent to a scaling transformation
which does not change the commutativity of two projected
position operators. Therefore, applying SVD does not obscure
an actual breakdown of the original formalism, but effectively
improves the convergence and stability of the numerical algo-
rithm, as shown later (see Fig. 1).

The Bott indices for two spin sectors are now given by
[27–29,32]

B± = 1
2π

Im{tr[log(Ṽ±Ũ±Ṽ
†
±Ũ

†
±)]}. (10)

Finally, we define the spin Bott index as the half-difference
between the Bott indices for the two spin sectors

Bs = 1
2 (B+ − B−). (11)

Similar to the spin Chern number [8–10,25,26] the spin Bott
index is a well-defined topological invariant. The spin Bott
index is also directly related to the Z2 topological invariant.
Its robustness is due to the existence of two spectral gaps: the
insulating gap of the Hamiltonian and the spectral gap of the
projected spin operator Pz. As long as the two gaps persist,
the computational formalism of the spin Bott index can be
applied. The spin Bott index is applicable to quasiperiodic and
nonperiodic systems, which provides especially a useful tool
to determine the electronic topology of those systems without
periodicity.

B. Relationship between Bott index and Chern number

To illustrate the equivalency of the Bott index and the
Chern number, we use the Haldane model [35,36] as an
example. The Haldane model exhibits a nonzero quantization
of the Hall conductance in the absence of an external magnetic
field. The Hamiltonian is written as

H = t
∑

〈ij〉
c
†
i cj + t2

∑

〈〈ij〉〉
νij c

†
i cj + "

∑

i

ξic
†
i ci . (12)

The first term is a nearest-neighbor (NN) hopping term on
the honeycomb lattice. The second term is a next-NN hopping
term, which carries a phase factor. The last term is a staggered
sublattice potential (where ξi = ±1). The system undergoes
a transition from the Chern-insulator to the normal-insulator
phase when tuning the staggered potential (") in the last term.

As shown in Fig. 1(a), with the increasing ", the Chern
insulator phase with C = 1 becomes a normal insulator with
C = 0. The calculated Bott index shows similar behavior, ex-
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field. The Hamiltonian is written as

H = t
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†
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†
i cj + "

∑

i

ξic
†
i ci . (12)
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term, which carries a phase factor. The last term is a staggered
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(a) (b)

FIG. 1. (a) Topological phase transition in the Haldane model. The parameters are t = −1 and t2 = 0.15e−iπ/3. (b) Topological phase
transition in the Kane-Mele model. The parameters are t = 1, λSO = 0.3, and λR = 0.25. The Bott B (spin Bott Bs) index is consistent with
the Chern number (Z2 invariant) except around the phase transition point. This is because we use a relatively small supercell to calculate the
Bott index. The small divergence would disappear if a larger supercell is used in the calculation of (spin) Bott index. The calculated (spin) Bott
index with SVD shows a better performance than the one without SVD.

cept for a small discrepancy around the phase transition point.
According to Ref. [33], the difference between the Chern
number and Bott index is within a correction of the order
O(1/L), where L is the system size. Because the energy gap
reduces to zero and the correlation length increases dramati-
cally near the phase transition point, it requires a larger sample
size to reach a high accuracy of the Bott-index calculation.
Therefore, finite-size effect induces a small divergence be-
tween the Chern number and Bott index. However, one can
still easily distinguish topological nontrivial from trivial states
as the divergence is quite small. Furthermore, by increasing
the sample size, one can obtain a more accurate Bott index
even around the phase transition point. Comparing the Bott
index calculated with and without SVD, it is clear that the Bott
index calculated without SVD departs from the exact value of
the topological invariant, even when the system is away from
the phase transition. Moreover, with the increasing sample
size, the method with SVD converges faster than the one
without SVD, to the exact value of the topological invariant.
This indicates that applying the SVD does not destroy the
original formalism, but indeed improves the convergence and
stability of the numerical algorithm.

C. Relationship between spin Bott index and Z2 invariant

To check the relationship between the spin Bott index and
Z2 index, we adopt the Kane-Mele model [1,2] as an example.
The Kane-Mele Hamiltonian on a graphene lattice is given by

HKM = t
∑

〈ij〉
c
†
i cj + iλSO

∑

〈〈ij〉〉
νij c

†
i szcj

+ iλR

∑

〈ij〉
c
†
i (s × d̂ij )zcj + λv

∑

i

ξic
†
i ci . (13)

The first term is a NN hopping term on the honeycomb lattice,
where we have suppressed the spin index on the electron

operators. The second term is the mirror symmetric spin-orbit
coupling (SOC) term which involves spin-dependent second
NN hopping. Here, νij = 2√

3
(d̂1 × d̂2), where d̂1 and d̂2 are

unit vectors along the two bonds that the electron traverses
going from site j to i. sz is a Pauli matrix describing the
electron spin. The third term is a NN Rashba term, which
explicitly violates the Mz mirror symmetry. This term will
arise from a perpendicular electric field or interaction with a
substrate. The fourth term is a staggered sublattice potential
(ξi = ±1), which can be included to describe the transition
between a QSH phase and a normal insulator. This term
violates the symmetry under twofold rotations in the plane.
By tuning the staggered sublattice potential (λv) in the last
term, one can realize the transition between a topologically
nontrivial QSH phase and a trivial insulator, as shown in
Fig. 1(b). We calculate the Z2 invariant by directly tracing
the evolution of one-dimensional (1D) hybrid Wannier charge
centers (WCCs) [37] during a “time-reversal pumping” pro-
cess [6]. By increasing λv , the QSH insulator with Z2 = 1 is
driven to a trivial insulator with Z2 = 0. The calculated spin
Bott index Bs is consistent with the Z2 invariant. The small
divergence between the Z2 invariant and Bs around the phase
transition point is induced by the finite size of the sample,
which is similar to that between the Chern number and the
Bott index. Also, the spin Bott index calculated with SVD
shows a better performance than the one without SVD, similar
to the case of the Bott index.

In Fig. 2, we give two specific examples of the Kane-
Mele model in different phases. The calculated Z2 invariant
are 1 and 0 for the QSH phase (λv = 1.0) and the trivial
insulator (λv = 2.5), respectively. We calculated the spin Bott
index using a 10 × 10

√
3 lattice with the same Hamiltonian

and under periodic boundary condition (PBC). The spectra
of the projected spin operator Pz = P ŝzP are separated into
three groups for both trivial and nontrivial cases as shown in
Figs. 2(d) and 2(h). In the spectrum of Pz, Nocc/2 eigenvalues
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FIG. 2. Superposition of band structures for the (a) Ni2NX3,
(b) Pd2NX3, and (c) Pt2NX3 systems, (a1)–(c1) without SOC and
energy in relation to the DP (EDP) and (a2)–(c2) with SOC and energy
in relation to the K point gap’s lower band (ELG). (d) Depiction of the
Dirac bands and SOC effect in the (d1) downward band bending at
M and (d2) graphenelike. (e) Dirac point SOC energy gap (EDP

g ). (f)
Global energy gap between M and K points (EMK

g ). (g) Topological
invariant. (h) Topological transition for Ni2ZnX3 with blue (red) lines
indicating the states without (with) SOC.

lower when compared with that of its counterpart (Pt2HgSe3)
jacutingaite.

Once we have shown the feasibility of the energetically
stable counterparts of jacutingaite, we focus on the electronic
properties and topological phases of single-layer M2NX3 sys-
tems. As shown in Fig. 2(a)–2(c), we found the emergence
of Dirac cones ruled by the hexagonal N−M−N buckled
lattice. The projection of the energy bands, near the Fermi
level, reveals that the Dirac cones are mostly composed of the
transition metal N (s) orbitals hybridized with the host M(d)
orbitals, viz., Ni(3d), Pd(4d ), and Pt(5d ). It is noticeable
that, for a given host transition metal M, the electronic band
structures share nearly the same features around the Fermi
level. For instance, in Fig. 2(a) we present the superposition

of the electronic band structures of Ni2NX3 with N = Zn,
Cd, and Hg, and X = S, Se, and Te; similarly for Pd2NX3
and Pt2NX3, as shown in Figs. 2(b) and 2(c). Such a figure,
where each material contributes with a translucent set of lines
(band structure), allows us to identify similar features in the
compounds characterized by darker regions (more details can
be found in the Supplemental Material [35]). In the absence
of SOC, the linear dispersion of the energy bands at the K and
K′ points gives rise to the Dirac points (DPs) indicated as DP
in Figs. 2(a1)–2(c1), whereas by turning on the SOC contri-
bution we find energy gaps taking place at the DPs [EDP

g in
Figs. 2(a2)–2(c2)]. The SOC in the system is mostly given by
the M atoms [26], and its strength is a quantitative indication
of the stability of topological states. Here, it is worth high-
lighting that SOC-induced energy gaps at the DP [Fig 2(e)] are
larger in Pt2ZnX3 compared with the ones of the other Pt2NX3
systems. For instance, Pt2ZnX3 (with X = Se or Te) presents
EDP

g ≈ 178 meV, being larger by 34 meV (23%) compared
with that of jacutingaite and its counterpart Pt2HgTe3, both
systems present EDP

g = 145 meV. In particular, these findings
can be understood by comparing the equilibrium geometries
of the N−Pt−N buckled hexagonal lattice; namely, Zn–Pt–Zn
presents lower values of vertical buckling and Zn–Pt equilib-
rium bond length (dMN = 2.55 Å) compared with the ones
of Hg–Pt–Hg, dMN = 2.79 Å, strengthening the Pt contri-
bution to the Zn(s) Dirac bands. It is worth pointing out
that larger values of EDP

g in Pt2ZnX3 have been maintained
even upon the use of hybrid functionals (HSE). Here we
found EDP

g = 232 and 242 meV for X = Se and Te, both
values larger than that obtained for jacutingaite, 222 meV
(in Ref. [52] the authors obtained 218 meV using the same
calculation approach).

Besides the energy gap induced by the SOC at the K/K′

points, downward bending of the upper Dirac band along
the K–M direction leads to lower values of global gaps and
eventually results in semimetallic systems. In Fig. 2(f) we
show the energy difference between the lower point of the
upper Dirac band at the M point and the top of the Dirac
valence band at the K point [EMK

g in Figs. 2(d1) and 2(d2)].
Negative values of EMK

g , for M = Ni and Pd systems, indicate
that they are semimetallic. For M = Pt, the SOC strength
always overcomes the downward band bending, where the
semiconducting character has been preserved. Focusing on the
Pt2NTe3 systems, we found indirect energy band gaps of 133
and 61 meV for N = Zn and Hg, respectively, while Pt2HgTe3
presented a direct energy gap (EDP

g < EMK
g ) of 142 meV.

To characterize the topological phase of the M2NX3 sys-
tems we have computed the Z2 [53] invariant by analyzing
the parity of each band at the time-reverse invariant momenta
(TRIM) and considering all bands below the upper Dirac
bands fully occupied [54]. It is worth noting that the pres-
ence of semimetallic bands does not necessarily rule out the
(possible) emergence of topologically nontrivial phases, char-
acterizing a Z2-metallic phase [55]. In this case, the edge states
are no longer protected against backscattering processes. Our
results, summarized in Fig. 2(g), reveal that, while all Hg com-
pounds present a nontrivial topological phase, Ni2ZnX3 and
Pd2CdX3 systems present a trivial → nontrivial topological
transition for X = S → Te. In these systems, there is an extra
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>The Hg wavefunctions are interacting 
with each other up to ~1nm, defining a 
localization length

>Spacial localized wave functions are 
topologically trivial:

>fully localized wave functions are 
eigenfunction of the position operator:
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