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Gauge-Invariant Wigner Formalism in terms of general EM fields (no potentials), but complicated

Physical Settings: 2D Transport in (x, y), General E(x, y), Linear B(x, y), stationary fields

Simulation Analysis: Interplay Between Electric and Magnetic Fields

Local Effect of the Interplay between E and B

Nonlocal Effect of the Interplay between E and B
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Gauge-Invariant Wigner FormalismGauge-Invariant Wigner Formalism

Kinetic Momentum Canonical Momentum Hamiltonian EM Fields and Potentials
P p = P + eA(x) H = (p−eA(x))2

2m + eϕ E = −∇ϕ− ∂A
∂t

physical quantity mathematical quantity A, ϕ - EM potentials B = ∇× A

Density matrix

ρ(x + s
2 , x −

s
2 , t) = ψ(x + s

2 )ψ(x −
s
2 )

∗

Evolution equation
∂ρ(x+ s

2 ,x−
s
2 )

∂t = 1
iℏ [Hρ]

Weyl-Stratonovich Transform (WST)

fw(Pm, x) =
L/2∫

−L/2

ds
L e

− i
ℏ s·Pm− i

ℏ
e
2 s·

1∫
−1

dτA(x+ sτ
2 )

ρ(x + s
2 , x − s

2 )

WST → Weyl Transform (WT) if A = 0

WT with p introduces gauge dependent theory

WST removes the gauge dependence introducing P

WST

(
∂

∂t
+

PM

m
· ∂
∂x

)
fw(PM, x) =

∞∑
m=−∞

 e
2iℏ

1∫
−1

dτDF(x,m, τ)− e
2m

1∫
−1

dτ
τ

2
HF(x,m, τ) · ∂

∂x

+
e

2iℏ

1∫
−1

dτHF(x,m, τ) · PM

m
+

e2

4miℏ

1∫
−1

1∫
−1

dτdη
τ

2
IF(x,m, τ, η)

 fw
(
PM−m, x

)

In terms of the kinetic momentum P

DF(x,m, τ) = −
L/2∫

−L/2

ds′

L
e−

i
ℏ m∆ps′

(
s′ · E(x +

s′τ
2
)

)

HF(x,m, τ) =

L/2∫
−L/2

ds′

L
e−

i
ℏ m∆ps′

[
s′ × B(x +

s′τ
2
)

]

IF(x,m, τ, η) =

L/2∫
−L/2

ds′

L
e−

i
ℏ m∆ps′

(
s′ × B(x +

s′η
2
)

)
·
(

s′ × B(x +
s′τ
2
)

)

Quantities depending on E,B of general form (no EM potentials)
Pm = m∆P, m ∈ N , ∆P = 2πℏ

L - discrete momentum for finite systems;

L → ∞ Pm → P continuous momentum - long coherence length limit
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Gauge-Invariant Wigner FormalismGauge-Invariant Wigner Formalism

(
∂

∂t
+

PM

m
· ∂
∂x

)
fw(PM, x) =

∞∑
m=−∞


e

2iℏ

1∫
−1

dτDF(x,m, τ)

︸ ︷︷ ︸
A

− e
2m

1∫
−1

dτ
τ

2
HF(x,m, τ) · ∂

∂x︸ ︷︷ ︸
B

+
e

2iℏ

1∫
−1

dτHF(x,m, τ) · PM

m︸ ︷︷ ︸
C

+
e2

4miℏ

1∫
−1

1∫
−1

dτdη
τ

2
IF(x,m, τ, η)

︸ ︷︷ ︸
D


fw
(
PM−m, x

)
(1)

DF(x,m, τ) = −
L/2∫

−L/2

ds′

L
e−

i
ℏ m∆ps′

(
s′ · E(x +

s′τ
2
)

)

HF(x,m, τ) =

L/2∫
−L/2

ds′

L
e−

i
ℏ m∆ps′

[
s′ × B(x +

s′τ
2
)

]

IF(x,m, τ, η) =

L/2∫
−L/2

ds′

L
e−

i
ℏ m∆ps′

(
s′ × B(x +

s′η
2
)

)
·
(

s′ × B(x +
s′τ
2
)

)

Complicated for E, B fields of general spatio-temporal dependence

Lack of any computational experience

CONSIDER simplifying physical settings

CLUE: For homogeneous B (1) takes the standard form with magnetic force on the left
A → Wigner potential; B,D → 0; C → magnetic component of Lorentz force (L → ∞)

CONSIDER the next term in Taylor series of B: linear B(x, y)
2D Transport in (x, y) plane, general E(x, y), (stationary fields)



6

Physical Settings: 2D Transport, Linear B, General EPhysical Settings: 2D Transport, Linear B, General E

E(x, y) ∈ (x, y) plane → Wigner potential B = (0, 0,B0 + B1y) ⊥ (x, y) plane in the limit L → ∞; D neglected

Simulation Setup.

Analyze interplay between LO and WP
Magnetic fields B(y) = B0 + B1y with
B0 ≫ B1: HoD neglected
Gaussian Wigner state with kinetic
energy 0.1eV and σx,y = 3nm

Injected from the bottom towards 0.3eV,
1nm barrier (green lines), tunneling only
Dashed line indicates the mean path of
the state’s evolution.
Figure: The 2D electron density n(x, y)
resembles the tongue of The Rolling
Stones

Magnetotunneling(
∂
∂t +

P
m · ∂

∂x + P×B(y)
m · ∂

∂P

)
fw
(
P, x

)
= Liouville Operator (LO)∫

dP′Vw(P − P′, x)fw(P′, x)+ Wigner Potential (WP)

B1ℏ2

m
e

12

(
∂2

∂P2
y

∂
∂x −

∂
∂Px

∂
∂Py

∂
∂y

)
fw
(
P, x

)
High order fw Derivatives (HoD)
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Simulations: Local Effect on TunnelingSimulations: Local Effect on Tunneling

0T –

0T –

0T –

0T –

B(y)

Figure: B0 = 0, B1 = 0. Without magnetic field the electron
density n(x, y) reflects the symmetry of the task. Fine
oscillations are observed above the barrier.

-6T –

-6T –

-6T –

-6T –

B(y)

Figure: B0 = −6T, B1 = 0. A constant magnetic field bends
the density and thus the mean path and destroys the
oscillations above the barrier
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Simulations: Local Effect on TunnelingSimulations: Local Effect on Tunneling

-6T –

-3T –

-0T –

3T –

B(y)

Figure: B0 = −6T, B1 = 0.2T/nm.

–The magnetic field becomes zero at the barrier: The oscillations
appear again above it, in the upper half of the domain.

–The switch of the sign of B causes a snake type of mean path.

-2T –

-5T –

-8T –

-11T –

B(y)

Figure: B0 = −2T, B1 = −0.2T/nm.

–The magnetic field is large at the barrier. The fine oscillations are
suppressed as in the constant (B0 = −6T) magnetic field case.

–The mean paths differ, but guide the state to same final point.
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Local Effect on TunnelingLocal Effect on Tunneling

B0 = 0, B1 = 0

B0 = −6T, B1 = 0

B0 = −6T, B1 = 0.2T/nm

B0 = −2T, B1 = −0.2T/nm

DENSITY( y) =
∫

n(x, y)dx

Two groups depending on the presence of
magnetic field in the barrier region
– oscillations are suppressed
– barrier transparency is affected

Indicates local E-B interaction



10

Nonocal Effect of the E-B InterplayNonocal Effect of the E-B Interplay

NEGATIVITY(y)=
∫

fwθ(−fw)dpdx B0 = 0, B1 = 0

B0 = −6T, B1 = 0

B0 = −6T, B1 = 0.2T/nm

B0 = −2T, B1 = −0.2T/nm

Negative values imply quantumness

Negative values appear in the injected positive
initial Gaussian state away before the barrier

Indicates nonlocal action of the barrier
which depends on the magnetic field
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ConclusionsConclusions

The gauge-invariant Wigner equation - in terms of general EM fields, but:
computationally challenging, numerical approaches yet not developed

First experiences: 2D Transport, general E, linear B, stationary fields

Equation linking magnetic aware Liouville, Wigner Potential and High-order Derivative
operators (LO,WP,HoD). Simulation settings where HoD is small and neglected

The interplay of the magnetic LO and WP suggest local and non-local effects, which need
further analysis.

Inhomogeneous magnetic field effects are potential candidates for control and manipulation of
electron states.
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