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Introduction
• Metal contacted to TMD ➔ high 𝜙𝐵, MIGS ➔ high contact resistance (Rc).
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Our strategy: Low-𝜅 surrounding dielectric to reduce Rc.

Das, S. et al. Nano Lett. 13, 100–105.

Shen, P.-C. et al. Nature 593, 211–217.
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Quantum Transport Using PETRA
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Plane-wave Electron TRAnsport (PETRA) ➔ an in-house quantum transport solver [1-2] 

1. Van de Put et al. Scalable atomistic simulations of quantum electron transport using empirical pseudopotentials. Computer Physics Communications 244, 156–169 (2019).

2. M. Van de Put, “Plane-wave Electron TRAnsport.” https://gitlab.com/petra-sim/petra.

Key highlights:

• Atomic and device scales decoupled.

• Bloch wave basis, FEM discretization.

• Computational efficiency using FFT.

Real space ballistic transport of an aGNR

using PETRA 

https://gitlab.com/petra-sim/petra
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Simulation flow chart

3International Workshop on Computational Nanotechnology

Three steps in our simulation methodology

Step 1 : Creating the contact heterostructure.

Step 2 :  Add doping, dielectrics and solve Poisson.

Step 3 : Solve QTBM, extract T(E), and calculate Rc.
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Materials modeling
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• Local potential from VASP ➔ 𝑥 − 𝑦 averaged and truncated at 𝐸trun
loc (= −5.13 eV)

• Solve the single particle Schrödinger equation for the unit cell
−ℏ2

2
∇. 𝑚eff

−1 𝒓 ⋅ ∇𝑢𝑛𝑘 𝒓 + 𝑉m 𝒓 + 𝑉TMD 𝒓 𝑢𝑛𝑘 𝒓 = 𝐸𝑛𝑘𝑢𝑛𝑘 𝒓

   
  

 

 

    

    

Metal atoms➔ empirical 

pseudopotentials, 𝐸cut = 250 eV



Creating the contact heterostructure
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Unit cell ➔ Repeat periodically along 𝑥➔ Eliminate portion above TMD

  

 

 

 

𝑉rem 𝒓

 

 

Reconstructed bandstructure using Bloch wave basis



Rc calculation
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Poisson:

• Appropriate dielectric tensors for different regions.

• 1L-MoS2 is n-doped to 𝑁2D = 1 × 1013cm−2

• All boundaries ➔ Neumann BC and Top right corner ➔ Dirichlet BC (point).

Schrödinger:

• 0.1 V bias to right edge of simulation domain.

• Device Hamiltonian ➔ wavefunctions (QTBM) ➔ T(E, ky). 

• 𝐼 =
2𝑞

ℎ
∫ d𝑘𝑦∫ d𝐸 𝑇 𝐸, 𝑘𝑦 𝑓𝐿 𝐸, 𝜇𝐿 − 𝑓𝑅 𝐸, 𝜇𝑅 and Rc from Ohm’s law.

 

 

     

     

                      

                      

       

𝜌met 𝒓 = 𝐷𝑂𝑆met ⋅ 𝑉 𝒓 − 𝜙met

𝜌TMD 𝒓 =
𝑚∗𝑘B𝑇

𝑡2D𝜋ℏ
2 𝑙𝑛 1 + 𝑒

−
𝑉 𝒓 −𝜒TMD−𝐸F

𝑘B𝑇

from VASP
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Contact setup
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• 1L-MoS2 is 𝑛-doped to 𝑁s = 1 × 1013 cm−2.

• Four surrounding dielectrics ➔ Air, SiO2, Al2O3 and HfO2.

• Uniform effective mass tensor (corresponding to MoS2) across the entire simulation domain.
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Results - Effect of surrounding dielectric
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• 𝜖𝑟 of surrounding dielectric ↑ ➔ Rc of the contact ↑
• Low-𝜅 surrounding dielectric ➔ lower Rc



• 𝜖𝑟 of surrounding dielectric ↑ ➔ Tunneling width for electrons ↑

• 𝜖𝑟 ↑ from 1 to 25 ➔ 3.65x increase in tunneling width.
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Results - Effect of surrounding dielectric



Results - Electric field profile
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High-𝜅 surrounding dielectric ➔ dielectric screening ↑➔ depletion and tunneling widths ↑➔ Rc ↑
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Effect of 𝐿low−𝜅
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• Vary 𝐿low−κ (from 0 nm to 12 nm)  to investigate its impact on Rc.

• All other parameters are same as the previous simulations.

     

 
  
  
 

     

       

    

                   

        

             

         



Effect of 𝐿low−𝜅

International Workshop on Computational Nanotechnology

• 2nm of SiO2 at the edge of metal ➔ 3x ↓  n tunnel ng w dth and  ~4 orders ↓ in Rc.

• Advantages : (a) As spacer to isolate S/D from gate. (b) High-𝜅 around the rest of channel ➔ ↑ 𝝁 of MoS2 [1] 

12

[1] Ong, Z.-Y et al. Mobility enhancement and temperature dependence in top-gated single-layer MoS2. Phys. Rev. B 88, 165316 (2013).

     
       

    

         

     
       

     

          

     
       

    

         

     

       

    

        

         



Key conclusions
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• Low-𝜅 surrounding environment ➔ weaker screening of 

fringing field ➔ smaller depletion and tunneling widths ➔

Lower contact resistances.

Low-𝜅 surrounding dielectric around monolayer TMDs reduce Rc

• A small layer of Low-𝜅 near the edge of metal is sufficient to 

reduce Rc by several orders of magnitude.

Future works
• Incorporating Image Force Barrier Lowering (IFBL) into our 

simulations ➔ reduces Rc values reported in this study, 

especially for low-𝜅 environments.

     
       

   

        

     
       

    

         

     
       

     

          

     
       

    

         

     

       

    

        

         



Thank you !

Questions ?
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