Ab initio calculation of mobility degradation caused by Si-vacancies in SiC/SiO₂ channels

Colin Kälin, Mathieu Luisier Integrated Systems Laboratory, ETH Zürich, Switzerland Email: ckaelin@iis.ee.ethz.ch

Introduction

- 4H-SiC for power semiconductor devices
- High density of electrically active defects at the interface
- Consequences:
 - High specific ON-state resistance
 - Instability of the threshold voltage
 - Lower channel mobility compared to bulk

Typical mobility values

	Mobility [cm²/(Vs)]	
Bulk 4H-SiC	1000	
4H-SiC/SiO ₂ channel	80-85	

From: K.Tachiki et al. (2021)

Material comparison

Quantity	4H-SiC	Si
Band gap [eV]	3.26	1.1
Critical breakdown field [MV/cm]	2.4	0.3
Thermal conductivity [W/cm*K]	4.5	1.5

From: F. Roccaforte et al. (2018)

Outline

- 1. 4H-SiC for power semiconductor and SiC/SiO₂ channels
- 2. Background
- 3. Creating SiC/SiO₂ interface structures
- 4. Calculating Mobility Degradation
- 5. Conclusion

Background

- Mobility degradation is attributed to defects at the SiC/SiO₂ interface.
- **Experimental:** E.g., EELS-Spectroscopy, microscopy (STEM), mobility measurements, etc.
- Computational: Mostly DFT studies
- Proposed near-interface traps:
 - Si interstitials
 - C-clusters
 - O vacancies
 - Si vacancies
- Still open question: Exact nature of the defect and their influence on mobility

Method used here: NEGF + DFT study of SiC/SiO₂ structures

Creating SiC/SiO₂ Interface Structures

Challenge:

- Create SiC/a-SiO₂ interface with as few defects as possible
- Use these structures to study selected defects
- Solution:
 - Layer-by-layer method

Layer-by-layer procedure

- Start with bulk SiC
- Calculate the number of O and Si atoms to get the pre-selected oxide density
- Repeat for n layers for desired height:
 - Randomly place either Si or O atoms within a minimal distance
 - Perform geometry optimization with force field F while applying a force to these atoms towards the SiC surface
- Annealing with force field
- Geometry optimization with DFT(B)

Important Parameters

- Oxide density: 2.196*10⁻²⁷ kg/Å³
- Force field: ReaxFF by D.A. Newsome et al.
- External force F: 0.22 eV/Å

Creating SiC/SiO₂ Interface Structures

Pre-sort to avoid:

- Dangling bonds
- Holes in the oxide
- Hard-to-optimize structures

Observed features:

- (Almost) no dangling bonds
- Amorphous SiO₂
- Tetrahedral SiO₄ structure at the interface

Other design parameters:

- Unfix some of the SiC layers
- Introduce defects during LbL process

Creating SiC/SiO₂ Interface Structures

- Electronic structure (GGA)
 - Without defect
 - With defect (Si-vacancy)
- Example: Si-vacancy at the SiC/SiO₂ interface

Calculating Mobility

- DFT + NEGF approach for transport
- H-/S-matrix:
 - DFT basis set: 3SP GTH
- Approximation: Coherent transport, no electron-phonon interaction
- Mobility with dR/dL method: Expect linear increase of the resistance with device length

Calculating Mobility

dR/dL- method (K. Rim et al. 2002)

- 1. Construct unit cell with desired defect concentration
- 2. Repeat unit cell 1x, 2x, and 3x + add contacts
- 3. Compute the corresponding channel resistance R
- 4. Extract channel resistivity and mobility (~dR/dL)
- Defect density in the channel: 1.26*10¹⁴ cm⁻²
- Charge density: 1.55*10¹⁴ cm⁻²

Calculating Mobility

dR/dL- method (K. Rim et al. 2002)

- 1. Construct unit cell with desired defect concentration
- 2. Repeat unit cell 1x, 2x, and 3x + add contacts
- 3. Compute the corresponding channel resistance R
- 4. Extract channel resistivity and mobility (~dR/dL)
- Defect density in the channel: 1.26*10¹⁴ cm⁻²
- Charge density: 1.55*10¹⁴ cm⁻²
- Mobility value: 68.6 cm²/(Vs)

4.95 nm

Nitrogen Passivation

- Goal: Increase mobility through nitrogen passivation
- Mobility enhancement thanks to increased transmission
 - Example: For short structure (4.95 nm)
- Mobility value: 130.9 cm²/(Vs)

ETH zürich Computational Nanoelectronics Group

Conclusion

Summary

- Framework to study transport in SiC/SiO₂ structures with goal to increase mobility in power semiconductor devices
- Layer-by-layer approach: SiC/SiO₂ structure creation
- Mobility calculation for Si-vacancy (68.6 cm²/(Vs)) with dR/dL method and N-passivation (130.9 cm²/(Vs))

Future research directions

- Compile a library of calculated mobility values for different charge states and other defect types like interstitials, carbon chains, etc.
- Investigate different passivation schemes to improve the mobility

Thank you for your attention!

Oxide Quality

- SiC/SiO₂ structure analysis
 - Radial distribution function: amorphous oxide
 - Bond angle distribution

8

7

6

5

3

2

RDF g(r)

Radial distribution function SiC

--- Si-C bond length

3.5

14

15.06.2023

dR/dL - Method

- 3 systems with increasing length
- Inverse of the dR/dL is proportional to the mobility.

Channel

Channel

Contact

Bandstructures

More Backup Slides