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Motivation - Applications

Applications of 2D piezoelectric materials:Applications of 2D piezoelectric materials:

Twist angle offers a new 

degree of freedom!

Twist angle offers a new 

degree of freedom!

Stacking 2D materials allows more 

functionalization possibilities

Stacking 2D materials allows more 

functionalization possibilities

Chaojie Cui et al, Two-dimensional materials with piezoelectric and ferroelectric functionalities, Nature, 2018

ActuatorActuator

PiezophototronicPiezophototronic

Energy harvesting (nanogenerator)Energy harvesting (nanogenerator)
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Motivation – Modeling Challenge

Numerical load of DFT typically 

prevents full convergence w.r.t 

supercell size

Numerical load of DFT typically 

prevents full convergence w.r.t 

supercell size

• 2D materials need atomic resolution

• Stacking causes lattice mismatch

=> Structure relaxation

• Periodic bc’s 

=> Artificial strain minimized with 

sufficient supercell size
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This method:

• Structure relaxation while solving 

Kohn-Sham equations of 

sufficiently large structures

• DFTB parameters fit to reproduce 

DFT HSE06 results

This method:

• Structure relaxation while solving 

Kohn-Sham equations of 

sufficiently large structures

• DFTB parameters fit to reproduce 

DFT HSE06 results

Method

The total energy given in DFT (Kohn-Sham method):The total energy given in DFT (Kohn-Sham method):

Method flow diagram 
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Results: Parameter Transferability

• Parameters are not transferable between 

monolayer and bilayer structures

• All parameters are fitted simultaneously for 

each system respectively

• Parameters are not transferable between 

monolayer and bilayer structures

• All parameters are fitted simultaneously for 

each system respectively

Inacceptable for piezoelectric coeff. prediction
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Results: Parameterization

DFTB vs. HSE06 DFT:

✓ DFTB parameters are transferable between monolayer and bilayer structures

✓ Deep lying valence bands reproduced

✓ Piezoelectric coefficients agree with DFT calculations in small systems

HSE DFT:  elec. contr. e11 = 372 pC/m, ionic contr. -237 pC/m

DFTB: elec. contr. e11 = 369 pC/m, ionic contr. -233 pC/m
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Result: Convergence vs. Supercell Size

✓ Artificial boundary effects are avoided with sufficient supercell sizes

✓ Supercells containing ~1000 atoms are possible with DFTB

✓ Typical minimum ~600 atoms (angle dependent)

✓ Artificial boundary effects are avoided with sufficient supercell sizes

✓ Supercells containing ~1000 atoms are possible with DFTB

✓ Typical minimum ~600 atoms (angle dependent)

Averaged Interlayer Distance vs. Cell SizeCorrugation Field @ θ = 10 degrees 

hBN/hBP Heterostructure

hBN/hBP Heterostructure
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Result: Convergence vs. Supercell Size

In-plane Piezoelectric Coefficient 

✓ Piezoelectric coefficient converges with supercell size✓ Piezoelectric coefficient converges with supercell size

hBN/hBP Heterostructure
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Result: In-plane Piezoelectric Coefficients

• Material symmetry (here: 120-degree) reproduced

• Deviation from symmetry due to interlayer charge 

transfer, corrugation, twist-angle dependence, etc.

• Material symmetry (here: 120-degree) reproduced

• Deviation from symmetry due to interlayer charge 

transfer, corrugation, twist-angle dependence, etc.

Analytical Model (perfect sym.)Analytical Model (perfect sym.)

hBN/hBP Heterostructure hBN/MoS2 Heterostructure

Relevant for device design: In-plane piezoelectric coefficients are tunable
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Result: Out-of-plane Piezoelectricity

Finite out-of-plane piezoelectricity confirmed Finite out-of-plane piezoelectricity confirmed 

Out of plane response due to broken inversion symmetry along z expectedOut of plane response due to broken inversion symmetry along z expected

hBN/hBP Heterostructure hBN/MoS2 Heterostructure
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Conclusion

This talk:

✓ Introduction of method for reliable and efficient piezoelectricity prediction of 

2D heterobilayer systems

✓ The method guarantees convergence of results vs. system size

This talk:

✓ Introduction of method for reliable and efficient piezoelectricity prediction of 

2D heterobilayer systems

✓ The method guarantees convergence of results vs. system size

Take home message:

• Large enough supercell is required for piezoelectricity prediction

• In-plane piezoelectric coefficients are tunable

• Finite out-of-plane piezoelectric response confirmed

Take home message:

• Large enough supercell is required for piezoelectricity prediction

• In-plane piezoelectric coefficients are tunable

• Finite out-of-plane piezoelectric response confirmed

Thank you!Thank you!
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