

Institut Català de Nanociència i Nanotecnologia

LSQUANT: Linear Scaling Quantum Transport Methodologies José H. Garcia

Barcelona – Jun 12th, 2022

The goals of this presentation

- Gain insights into the importance of electrical response in modern materials science.
- Understand the relationship between the Kubo Formula and electrical response.
- Learn how to numerically solve the Kubo formula in a linear-scaling algorithm.
- Present the up-and-coming LSQuanT package

https://www.lsquant.org/lsq/index.php

Electrical Response

 $rac{dec{p}}{dt}$ $q\vec{E}$

Unlimited momentum increment

$$\frac{d\vec{p}}{dt} = q\vec{E} - \frac{\vec{p}}{\tau}$$

Unlimited momentum increment

au momentum relaxation time

$$\vec{J} = \frac{nq^2\tau}{m}\vec{E}$$
 (Drude model)

Quantum mechanics

Quantum mechanics

 $i\hbar \frac{d|\Psi(t)\rangle}{dt} = H|\Psi(t)\rangle$

 $H = \begin{pmatrix} \epsilon_0 & t_{01} & 0 \\ t_{10} & \epsilon_1 & t_{12} \\ 0 & t_{21} & \epsilon_2 \end{pmatrix}$

 $|\Psi\rangle = \begin{pmatrix} \psi_0 \\ \psi_1 \\ \psi_2 \end{pmatrix}$

The Hamiltonian as Sparse matrix

The macroscopic **A**

$$i\hbar \frac{d|\Psi(t)\rangle}{dt} = H|\Psi(t)\rangle$$

$\langle \hat{A}(t) \rangle = \langle \Psi(t) | \hat{A} | \Psi(t) \rangle \equiv \text{Tr}[\hat{A}\rho(t)]$ Density matrix

$$i\hbar \frac{d\rho}{dt} = [H, \rho]$$

Von Neumann equation

The electrical response of A

The electrical response of A

Strong electric fields could change the ground states!

Linear response theory: The Kubo formula

Principal goal:

$$\rho\left(\underline{H},\vec{E}\right) = \rho_0(H) + \left(\nabla_{\vec{E}}\,\rho\left(\vec{E},H\right)\right)_{\vec{E}=0}\vec{E}$$

Fundamental Hypotheses

• Thermal equilibrium: $\rho_0(H) \rightarrow \rho_{eq}(T, \mu)$

Reservoir at temperature T

Linear response theory

Principal goal:

$$\chi_{\widehat{E}}$$

$$\rho\left(H,\vec{E}\right) = \rho_{0}(H) + \left(\nabla_{\vec{E}}\rho\left(\vec{E},H\right)\right)_{\vec{E}=0}\vec{E}$$

Fundamental Hypotheses

• Thermal equilibrium: $\rho_0(H) \rightarrow \rho_{eq}(T, \mu)$

• Adiabatic evolution: $|\varepsilon_n^0\rangle \rightarrow |\varepsilon_n(t)\rangle$

$$\langle \hat{A}(t) \rangle \equiv \text{Tr}[\hat{A}(t)\rho_{\text{eq}}] + \text{Tr}[\hat{A}(t)\chi_{\hat{E}}]$$

Linear response theory: The Kubo formula

$$\langle \hat{A}(t) \rangle = \lim_{t,\tau \to \infty} \int_0^\beta d\beta' \int_0^t d\tau' e^{-\tau'/\tau} \langle \rho_{eq} \hat{A} \left[E_\alpha J_\alpha(\tau' - i\hbar\beta') \right] \rangle$$

- ρ_{eq} : Density matrix in thermal equilibrium
- $E_{\alpha}J_{\alpha}(\tau' i\hbar\beta')$: **History** of the electric field coupled to the current density given a thermal broadening

Kubo, Ryogo (1957). "Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems". J. Phys. Soc. Jpn. 12 (6): 570–586. doi:10.1143/JPSJ.12.570.^o

$$\langle \hat{A} \rangle = i\hbar \int dE \operatorname{Tr} \left[f(E' - \mu)\delta(E' - H)\widehat{A} \ \frac{\mathrm{d} \ \mathrm{G}^+(E')}{\mathrm{d} E} \vec{V} \cdot \vec{E}_0 \right]$$

$$\langle \hat{A} \rangle = i\hbar \int dE \operatorname{Tr} \left[f(E' - \mu)\delta(E' - H)\widehat{A} \; \frac{\mathrm{d} \; G^+(E')}{dE} \vec{V} \cdot \vec{E}_0 \right]$$

Representable in tight-binding basis

$$H = \begin{pmatrix} \epsilon_0 & t_{01} & 0 \\ t_{10} & \epsilon_1 & t_{12} \\ 0 & t_{21} & \epsilon_2 \end{pmatrix} \quad |\Psi\rangle = \begin{pmatrix} \psi_0 \\ \psi_1 \\ \psi_2 \end{pmatrix}$$

$$\langle \hat{A} \rangle = i\hbar \int dE \operatorname{Tr} \left[f(E' - \mu)\delta(E' - H)\widehat{A} \; \frac{\mathrm{d} \; G^+(E')}{dE} \vec{V} \cdot \vec{E}_0 \right]$$

Representable in tight-binding basis

$$H = \begin{pmatrix} \epsilon_0 & t_{01} & 0 \\ t_{10} & \epsilon_1 & t_{12} \\ 0 & t_{21} & \epsilon_2 \end{pmatrix} \quad |\Psi\rangle = \begin{pmatrix} \psi_0 \\ \psi_1 \\ \psi_2 \end{pmatrix}$$

$$\langle \psi_n | V_x | \psi_m \rangle = i(X_n - X_m) H_{nm}$$

$$\langle \hat{A} \rangle = i\hbar \int dE \operatorname{Tr} \left[f(E' - \mu)\delta(E' - H)\widehat{A} \; \frac{\mathrm{d} \; G^+(E')}{dE} \vec{V} \cdot \vec{E}_0 \right]$$

Singular Functions

$$G^{+}(E') = \lim_{\eta \to 0} \frac{1}{H - E + i\eta}$$
$$\int dE' \delta(E' - H) f(E') = f(H)$$

Numerical implementation

The kernel polynomial method

$$DOS \equiv \text{Tr}[\delta(\mathbf{E}' - H)]$$
$$Tr[\delta(H - E)] = \sum_{n} \delta(E_{n} - E)$$

Polynomial expansion

$$\delta(H - E) = \sum_{n=0}^{\infty} c_n p_n(H)$$

0	5	10	15	20	25
0		1	1		' 1
	_	·			
	· •	· · · ·			
5- •	• •		•		-
· ·					
			•		
	· · · ·		- C.		
10					-
· · ·		• •	•		
· ·				•	
•			• •		
15	• .		• • •		.]
15		- 1 e			· .]
				· · ·	
20		•			
20-		- 1	_		_ 1
		- 1 A			·.
		-			
					••
25-				•	•••
L		1	•	•	••

The kernel polynomial method

$$DOS \equiv \text{Tr}[\delta(\mathbf{E}' - H)]$$
$$Tr[\delta(H - E)] = \sum_{n} \delta(E_{n} - E)$$

Polynomial expansion

$$\delta(H - E) = \sum_{n=0}^{\infty} c_n p_n(H)$$

 $O\left(N^3\right) \to O\left(N^2\right)$

0	5	10	15	20	25
0	• . `	- 1 - C	1	1	1
	1 e - 1				
•	•••••	•			
5-	••••••				
			- t.,		
			- C.		
10- •				•	-
· ·			•	1. L	
15	•	• •	• •		_
1.0	- 1 A.		- 22 - 2		• 1
		•			•
		1. N		· · · ·	
20-					-
					•
				1.111	- 1. I
25				•	· ·
25-			1.1	- t.	•••
L	1				

The random phase approximation

$$DOS \equiv \operatorname{Tr}[\delta(E' - H)]$$

$$DOS \equiv \langle r | \delta(H - E) | r \rangle$$

$$= \sum_{n,m=0}^{d} \xi_n \, \xi_m \langle n | \delta(H - E) | m \rangle$$

$$O(N^2) \to O(N)$$

Choosing the right distribution

$$\xi_n \, \xi_m = 0$$

 $\xi_n^2 = 1$

The Chebyshev polynomials

$$Tr[\delta(H - E)] = \sum_{n=0}^{M} c_n \langle r | p_n(H) | r \rangle$$
$$T_m(x) \equiv Cos (m \operatorname{ArcCos} (x))$$
$$T_{n+1}(x) \equiv 2 T_n(x) - T_{n-1}(x)$$

$$T_0(x) \equiv 1,$$

$$T_1(x) \equiv x,$$

$$T_2(x) \equiv 2x^2 - 1,$$

$$T_3(x) \equiv 4x^3 - 2x$$

$$O\left(N^2\right) \to O(M \: N)$$

The Gibbs oscillations

The final density of states

The final density of states

The density of states using KQuant

import matplotlib.pyplot as plt
from k_quant.system import System

import kpm kpm.safe CUTOFF= 0.99;

wann_syst = System(dimensions = (10000,1,1), w90_inp="linear_chain")
dens = kpm.Density(wann_syst, bounds=(-1,1))
dens.ComputeMoments(broadening =0.05)

plt.plot(*dens.spectral_average())

https://www.lsquant.org/lsq/index.php

Convergence of the Chebyshev polynomials

The LSQT

$$\langle \hat{A} \rangle = i\hbar \int dE \operatorname{Tr} \left[f(E' - \mu)\delta(E' - H)\widehat{A} \ \frac{\mathrm{d} \ \mathrm{G}^+(E')}{\mathrm{d} E} \vec{V} \cdot \vec{E}_0 \right]$$

$$\langle \hat{A}(\mu,T) \rangle = \sum_{m=0}^{M} \sum_{n=0}^{M} \Gamma_{m,n}(\mu,T) \operatorname{Tr} \left[\mathrm{T}_{m}(H) \hat{A} \mathrm{T}_{n}(H) \hat{V}_{\beta} \right]$$

Chebyshev expansion moment matrix

Scaling of the LSQT

$\mu_{m,n} = \operatorname{Tr} \left[T_m(H) j_x T_n(H) j_x \right]$

/	μ_{00}	$\mu_{0,1}$	$\mu_{0,2}$		$\mu_{0,M-1}$	$\mu_{0,M}$	Process #1
	$\mu_{2,0}$	$\mu_{2,1}$	$\mu_{2,2}$		$\mu_{2,M-1}$	$\mu_{2,M}$	Process #2 Process #3
	• •	•	•	•.	:	:	
	$\mu_{M-1,0}$	$\mu_{M-1,1}$	$\mu_{M-1,2}$		$\mu_{M-1,M-1}$	$\mu_{M-1,MS}$	Process #N-1
	$\mu_{M,0}$	$\mu_{M,1}$	$\mu_{M,2}$		$\mu_{M,M-1}$	$\mu_{M,M}$	/ Process #N

Multi-threaded sparse matrix-vector multiplication

Aplications

Applications: Canted quantum Spin Hall effect

$$\langle \vec{s} \rangle_{E_F} \approx \langle S_0 \rangle_{E_F} \, \hat{u}(\theta) \qquad \qquad \theta \equiv \arctan\left(\Lambda_z/\Lambda_y\right) \approx -56^\circ$$

Applications: Valley Hall effect

Applications: Spin relaxation

$$\mathbf{S}(E,t) = \frac{1}{2} \frac{\langle \phi(t) | \, \hat{\mathbf{s}} \delta(E - \hat{H}) | \phi(t) \rangle + \text{h.c.}}{\langle \phi(t) | \, \delta(E - \hat{H}) | \phi(t) \rangle},$$

European Research Council Established by the European Commission

Jaime Garrido Automatic parameter optimization

Joaquin Medina Adaptation to spin-orbit torque

Josep Buch Exploration of machine-learning Hamiltonian models

Luis Canonico Implementation of momentum-efficient KPM