Tkwant: a software package for time-dependent quantum transport

Thomas Kloss CNRS Néel, Grenoble / France

TK, Weston, Gaury, Rossignol, Groth and Waintal, New J. Phys. 23 023025 (2021)

12.06.2023 // International Workshop on Computational Nanoelectronics // Barcelona

Motivation

Aharonov-Bohm oscillations of "flying Qubits" in an electronic Mach-Zehnder interferometer

New physical effects in the transient regime. We aim for a simulation tool to describe them.

C. Bauerle group at Neel/Grenoble, measurements by S. Ouacel.

Motivation

New erea of experiments

- Time-resolved measurements
- GHz / THz regime
- Coherent single-electron sources
- Levitons, flying Qubits

Simulating quantum nanolectronics

tight-binding approximation

$$\hat{\mathbf{H}}(t) = \sum_{i,j} \mathbf{H}_{ij}(t) \hat{c}_i^{\dagger} \hat{c}_j$$

۸۸۸۸۰۰۰۰ time

time-dependent manybody

 $n_i(t) =$ $I_{ij}(t) = \Im(H_{ij} \langle c_i^{\dagger} c_j \rangle(t))$

$$\langle c_i^{\dagger} c_i \rangle(t)$$

Green functions $G_{ij}^{<}(t,t') = i \langle c_{j}^{\dagger}(t') c_{i}(t) \rangle$

Infinite system and Pauli principle

$$i\partial_t \psi_{\alpha E}(t,i) = \sum_j \mathbf{H}_{ij}(t) \psi_{\alpha E}(t,j), \qquad \qquad \hat{\mathbf{H}}(t) = \sum_{i,j} \mathbf{H}_{ij}(t) \hat{c}_i^{\dagger} \hat{c}_j$$

The problem is manybody even without interactions!

Gaury, Weston, Santin, Houzet, Groth and Waintal, Phys. Rep. 534, 1 (2014).

Nonequilibrium Green function approach (NEGF)

The wave function approach is mathematically equivalent to the Keldysh Green function approach

$$i\partial_t G^R(t,t') = \mathbf{H}_{\bar{0}\bar{0}}(t)G^R(t,t') + \int du \ \Sigma^R(t,u)G^R(u,t')$$
$$G^<(t,t') = \int du \ dv \ G^R(t,u)\Sigma^<(u,v)[G^R(t',v)]^{\dagger}$$

Both formulations related via

$$G_{ij}^{<}(t,t') = \sum_{\alpha} \int \frac{dE}{2\pi} i f_{\alpha}(E) \psi_{\alpha E}(t,i) \psi_{\alpha E}^{*}(t',j),$$

$$G_{ij}^{R}(t,t') = -i\theta(t-t') \sum_{\alpha} \int \frac{dE}{2\pi} \psi_{\alpha E}(t,i) \psi_{\alpha E}^{*}(t',j)$$

Disadvantage of Green function approach

- numerically much more expensive: scaling *sites*³ x *time*²
- numerical stability

Tkwant

Tkwant: A Python package for time-dependent quantum transport

nonstationary version of the Kwant code (Groth, Wimmer, Akhmerov, and Waintal, New J. Phys. 16, 063065 (2014))

https://tkwant.kwant-project.org/

Example: Fabry-Perot interferometer

Gaury, Weston, and Waintal, Nat. Commun. 6, 6524 (2015).

Tkwant simulation script for the Fabry-Perot interferometer

TK, Weston, Gaury, Rossignol, Groth and Waintal, New J. Phys. 23 023025 (2021). 1 import thwant 2 import kwant 3 from math import sin, pi 4 import matplotlib.pyplot as plt def make fabry perot system(); # Define an empty tight-binding system on a square lattice. lat = kwant.lattice.square(norbs=1) syst = kwant.Builder() # Central scattering region. syst[(lat(x, 0) for x in range(80))] = 0 13 syst[lat.neighbors()] = -1 # Backgate potential. $\hat{\mathbf{H}}(t) = \sum_{i=1}^{N_s+1} \epsilon_i \hat{c}_i^{\dagger} \hat{c}_i - \sum_{i=1}^{\infty} \hat{c}_{i+1}^{\dagger} \hat{c}_i - [e^{i\phi(t)} - 1] \hat{c}_1^{\dagger} \hat{c}_0 + \text{h.c.}$ syst[(lat(x, 0) for x in range(5, 75))] = -0.0956 # Barrier potential. 18 syst[[lat(4, 0), lat(75, 0)]] = 5.19615 # Attach lead on the left- and on the right-hand side. 20 sym = kwant.TranslationalSymmetry((-1, 0)) lead = kwant.Builder(sym) lead[(lat(0, 0))] = 0 lead[lat.neighbors()] = -1 24 25 syst.attach_lead(lead) syst.attach_lead(lead.reversed()) 26 28 return syst, lat 29 $V(t) = \begin{cases} 0, & \text{for } t < 0\\ \frac{V_{\rm b}}{2} \left(1 - \cos\left(\frac{\pi t}{\tau}\right) \right), & \text{for } 0 \le t \le \tau\\ V_{\rm b}, & \text{for } t > \tau \end{cases}$ 31 # Phase from the time integrated voltage V(t). 32 def phi(time): 33 vb. tau = 0.6, 30 if time > tau: return vb * (time - tau / 2.) return vb / 2. * (time - tau / pi * sin(pi * time / tau)) 33 38 39 times = range(2000) 41 # Make the system and add voltage V(t) to the left lead (index 0). 42 syst, lat = make_fabry_perot_system() 43 tkwant.leads.add_voltage(syst, 0, phi) 44 syst = syst.finalized() 46 # Define an operator to measure the current after the barrier. $j_i(t) = \langle c_i^{\dagger} c_{i-1} \rangle(t)$ 47 hoppings = [(lat(78, 0), lat(77, 0))] 48 current_operator = kwant.operator.Current(syst, where=hoppings) 50 # Set occupation T = 0 and mu = -1 for both leads. 51 occup = tkwant.manybody.lead_occupation(chemical_potential=-1) 52 53 # Initialize the time-dependent manybody state. 54 state = tkwant.manybody.State(syst, tmax=max(times), 55 occupations=occup) actual time-dependent simulation 56 57 # Loop over timesteps and evaluate the current. 58 currents = [] 59 for time in times 60 state.evolve(time) current = state.evaluate(current_operator) 61 62 currents.append(current) 63 64 # Plot the normalized current vs. time 65 plt.plot(times, currents / currents[-1]) 66 plt.show()

Script stays as close as possible to the analytical approach and to physical intuition.

Gallery of Tkwant examples

- Mach-Zehnder and Fabry-Perot electronic interferometers
- Floquet topological insulator
- Quantum Hall regime
- Quantum noise
- Heat transport and thermoelectic effect

- Multiple Andreev reflections
- Skyrmion dynamics
- Graphene relaxation dynamics
- Plasmons and Luttinger liquids

Green functions

Arbitrary Green functions can be calculated from the wavefunction

$$G_{ij}^{<}(t,t') = \sum_{\alpha} \int \frac{dE}{2\pi} i f_{\alpha}(E) \psi_{\alpha E}(t,i) \psi_{\alpha E}^{*}(t',j),$$

$$G_{ij}^{R}(t,t') = -i\theta(t-t') \sum_{\alpha} \int \frac{dE}{2\pi} \psi_{\alpha E}(t,i) \psi_{\alpha E}^{*}(t',j)$$

Example: Lesser Green function on an impurity after a sudden parameter change

$$G_{00}^{<}(t,t') = \theta(t)\theta(t')\frac{i\Gamma}{\pi}e^{-i\epsilon_0(t-t')}\int_{-\infty}^{0}d\omega\frac{1}{(\omega-\epsilon_0)^2+\Gamma^2}\left(e^{-i(\omega-\epsilon_0)t}-e^{-\Gamma t}\right)\left(e^{i(\omega-\epsilon_0)t'}-e^{-\Gamma t'}\right), \qquad \Gamma = 2\gamma^2$$

Example form Tkwant tutorial

Bosonic excitations in few-electron pulses

Interacting system behaves as Luttinger liquid.

Pulses travel faster with plasmon velocity, which is faster than the Fermi velocity.

Solving self-consistent equations

Hubbard-like Hamiltonian

$$H = \sum_{\langle ij \rangle, \sigma} \gamma_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U\theta(t) \sum_{i} c_{i\uparrow}^{\dagger} c_{i\uparrow} c_{i\downarrow}^{\dagger} c_{i\downarrow}$$

Mean-field decoupling

$$H^{\rm HF} = \sum_{\langle ij \rangle,\sigma} \gamma_{ij} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i,\sigma} \langle c^{\dagger}_{i\sigma} c_{i\sigma} \rangle(t) c^{\dagger}_{i\bar{\sigma}} c_{i\bar{\sigma}}$$
$$\langle c^{\dagger}_{i\sigma} c_{i\sigma} \rangle(t) = \sum_{\alpha} \int \frac{dE}{2\pi} f_{0,\alpha}(E) |\psi_{\sigma,\alpha,E}(i,t)|^2$$

A direct numerical implementation of above equations would be extremely inefficient!

Reason: very different timescales

Generic solver for self-consistent equations with Tkwant

Efficient algorithm: extrapolate the mean-field potential Q(t)

Tkwant performs the extrapolation and error estimate. The efficient algorithm is enforced by the interface.

Plasmon velocity simulations

TK, Weston and Waintal, PRB (2017). Matveev and Glazman, Physica B (1993).

Manybody-integral - ongoing works

Tensor factorization for functions (Quantics)

Represent a function discretized on *n* points on a bitstring of length *d*, where $n = 2^d$

Example <i>n</i> = 8:	$f(x_i) \longrightarrow f(u_1, u_2, u_3)$	
	i	$U_1 U_2 U_3$
	0	000
	1	001
	2	010
	3	011
	4	100
	5	101
	6	1 1 0
	7	1 1 1

Factorize the resulting tensor using cross factorization methods

Factorized tensor can be trivially integrated.

Khoromskij, Constr. Approx **34**, 257 (2011). Fernández, Jeannin, Dumitrescu, TK, Kaye, Parcollet, and Waintal,PRX. **80**, 041018 (2022).

Quantics for Tkwant

First step: Learn the integrand at the initial time t=0

2⁵⁰ (= 10¹⁵ for direct evaluation) points resolution is at the order of machine precision!

Second step: Reuse lerned evaluation points at later times t to calculate the integral

Summary of Tkwant

- simulation many-body observables for generic tight-binding system in a transient regime
- currents, densities, Green functions or arbitrary user defined observables
- generalization for self-consisten problems

Website with documentation and tutorial:

https://tkwant.kwant-project.org/

Numerical algorithm of Tkwant

- Define the tight-binding Hamiltonian (arbitrary geometry, dimension, couplings)

- Calculate time-independent scattering states

$$\mathbf{H}(t=0)\psi_{\alpha E}=E\psi_{\alpha E}.$$

- Band structure analysis

- Devise boundary conditions

- Solve n time-dependent Schrödinger equations
- Evaluate the manybody integral

$$n_i(t) \equiv \langle \hat{c}_i^{\dagger} \hat{c}_i \rangle(t) = \sum_{\alpha} \int \frac{dE}{2\pi} f_{\alpha}(E) |\psi_{\alpha E}(t,i)|^2$$

Conductance - transient behaviour

semiclassical Boltzmann theory

$$\partial_t f = -v_k \partial_x f - F(x, t) \partial_k f$$

generalized contact (Sharvin) resistance

 $\frac{1}{g} = \frac{1}{2} \left[\frac{1}{g_{L1}} + \frac{1}{g_{L2}} \right]$

Table of content

I) Electron quantum transport for noninteracting systems

II) Interacting systems

- Plasmons and transient conductance of Luttinger liquids

Transient resistance in Luttinger liquids

Luttinger like conductance

 $\frac{g_{\rm L}}{g_{\rm F}} = \left(1 + \frac{U}{\pi v_{\rm F}}\right)^{-1/2}$

exact bosonization for N-channel quasi-1d quantum wire, Matveev and Glazman, Physica B (1993).

but:

non-interacting leads will wash out the effect (Safi, Schulz, PRB 1995)

$$g_{\rm F} = e^2/h$$

Table of content

I) Electron quantum transport for noninteracting systems

II) Interacting systems

- Plasmons and transient conductance of Luttinger liquids

Plasmon velocities for N-channels

pulse propagation in a quasi one-dimensional quantum wire with N = 2

generalized expression for the plasmon velocities in presence of *N*-channels

$$1 = \sum_{\alpha=1}^{N_{\rm ch}} \frac{U}{W\pi} \frac{|v_{\alpha}|}{v_L^2 - v_{\alpha}^2}$$

Matveev and Glazman, Physica B (1993).

Conductance - transient behaviour

F: Fermi (non-interacting) T: transient

L: Luttinger

Wave function formalism (equivalent to Keldysh)

Evolve all eigenstates below the Fermi energy with the time-dependent Schödinger equation

$$i\partial_t \psi_{\alpha E}(t,i) = \sum_j \mathbf{H}_{ij}(t)\psi_{\alpha E}(t,j),$$
$$\psi_{\alpha E}(t < t_0, i) = \psi_{\alpha E}(i)e^{-iEt}$$

Calculate observables

Gaury, Weston, Santin, Houzet, Groth and Waintal, Phys. Rep. 534, 1 (2014).