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INTRO

Matter (electrons)
• Micrometer or larger sizes
Semiclassical models. Electrons as particles. Trajectories, …
• Nanometer scale
Quantum models. Energy level quantization. NDR, …

Electromagnetic fields
• GigaHertz or smaller frequencies
Poisson equation (𝑬∥(𝒓)) within a quasistatic approximation.
• 0.1-10 TeraHertz (THz gap)
Maxwell equations (E⊥ (𝒓),𝑩⊥ (𝒓)) coupled to a transport model.
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Initial approximations and use of conditional wave functions (effective 2D problem: single electron x, single mode q)
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SETUP

𝐸+,𝑚 − 𝐸−,𝑚 ∝ 2 (𝑚 + 1)ℏ𝜔𝑟

(e)        Polariton subspace (m = 0) 

AlAs/InGaAs/AlAs 

me = 0.041, ℇ = 12.9,        ( LB , Lx , LB ) = ( 2 , 16 , 2 ) nm

VB = 500 meV ,                ( E0 , E1 )= ( 28 , 106 ) meV
𝜔

2𝜋
= 19 THz , Lc,x ≅ μm,  𝛼 = 1.33 meV/nm , 𝛾 ≅ 0.4

xleft = 520 nm,            simulation box = 2 μm  

[ 𝜆𝑐𝑎𝑣𝑖𝑡𝑦 ≫ 𝑊𝑑𝑒𝑣𝑖𝑐𝑒  ]

| electron,photon >  ladder 

Wave 
packet
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Closed system scenario (infinite well). 
Jaynes-Cummings-like RWA solution from initial |1,0> state (double peak in x, single peak in q).         

OK, but  JC  model not suitable for transport.
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2D wavepacket with injection energy E1,0.    Nonzero coupling only inside active region.       

OK, but “exact” model  undoable  for

more electrons and/or more modes. 

( nm  ) ( nm  ) 
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• Born-Huang : expand over well-known photon states φ(q), 
with wavepackets Ф(x,t).

• Previous 2D to 1D. More degrees of freedom via conditional 
wavefunctions.

Born-Huang-like scheme

(1D propagation only for    electron degree x)
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• Born-Huang : expand over well-known photon states φ(q), 
with wavepackets Ф(x,t).

• Previous 2D to 1D. More degrees of freedom via conditional 
wavefunctions.

Born-Huang-like scheme

(if only 2    lowest levels)

(without light-matter coupling)

(with light-matter coupling)

(1D propagation only for    electron degree x)
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Displacement current 

BITLLES SIMULATOR
Bohmian Interacting Transport in non-equiLibrium eLEctronic Structure

AC / DC displacement current coefficient

DC result ( AC result elsewhere )

without light-matter coupling
with light-matter coupling
semiclassical scenario

• polaritonic splitting of the first excited RTD state. 
• ground state uncoupled.
• higher excited states coupled via other resonances.

( = T( E ) if f = 0 )
(DC Transmission coefficient) 

particle plus displacement current ( external f ) 

(Particle)

Ramo-Shockley-Pellegrini Theorem                    
[total current from flux of distinct wavepackets ( E, ti , … ). 

Bohmian velocities and conditional wave functions]

(displacement )
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SUMMARY
• Polariton signature not new neither unexpected     :    well-known in other platforms.

• ‘Old-fashion’ RTD  +  ‘modern’ microcavities             :    unexplored path for nanodevice enginneering at THz.

• Theoretical side                                                              :    need of new models at the strong coupling regime.

• Experimental side                                                           :    RTD-based oscillators at THz need to improve output power.

• No photonics. Still electronics                                      :    no need of NDR.

Next steps                                                                                     

• Applying such models in simple structures like ‘exciton polariton’ (3D electron-hole-photon) or coupled QWs. 

• Improving the initial approximations of these qualitative models.

THANK YOU for the attention! PRB 106, 205306 (2022)
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