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Single Photon Detection is a Critical Enabling Technology

Rare event detection Quantum Key Distribution Single Photon LIDAR Biological imaging

(e.g., dark matter, neutrinos,  Secure communications 3D terrain and infrastructure  Neuronal processes mouse brain
electron-proton decay) mapping
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Exquisite Performance for Single Photon Detection

Superconducting Nanowire

Avalanche Photodiode
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Hamamatsu Single Photon Detection: Tinsley et al, Nat. Comm. (2016)




Trade-Offs for Existing Single Photon Detectors

Efficiency
Max. Rate
litter
Bandwidth

Dark Counts

Human Eye

Max. Photons

Array Size

Temperature

worse performance better performance

What are the fundamental limits to single photon detection?

Are there inherent trade-offs?

What is the best architecture, and how do we design it?

From Prem Kumar




Plan for Presentation

-New general modeling framework
-Novel designs for Photon Number Resolution
-Experiments with molecular and nanoscale systems

-Novel designs for Energy Resolving Detectors




General Modeling Framework from Quantum Optics
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-Framework can handle...

* General light field
* Multiple photons
* Multiple modes
* Multiple profiles
» Different types of materials
* Atoms
 Molecules
* Solids

-Generates performance metrics
-Is practical

 Complex intermediate states
* Multiple states
* Coherent and incoherent

* Broad range of amplification processes

Young, Sarovar, Léonard, Phys. Rev. A (2019).




General Modeling Framework
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General Modeling Framework

I1I(t) = TrrigaT (K, to) pricuT (to))

Stochastic quantum master
equation for density matrix

/

How to get this?

p(t) = Vsys T Vi-m T Vamp

PMATTER (1) = Trreut[P(t, to) proTr(t0)]

T

System Architecture

I~ jﬁMATTER(t)dt ‘ Measurement outcome TI(t)

Pp;tlgn * ’ Amplification

Incoming light
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Decoupled detector

Fully coupled quantum detector

Amplification

Absorption




Fully Quantum Coherent Detector
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» Measurement backaction quenches absorption
» Detector has limited performance

Young, Sarovar, Léonard, Phys. Rev. A (2018).
Royer & Blais, Phys. Rev. Lett. (2018).
Helmer et al, Phys. Rev. A (2009).




Important Result

When v=1T and YV 4+T2 > 1/0g

Perfect detection can exist: 100% efficiency, no additional jitter

Young, Sarovar, Léonard, Phys. Rev. A (2018).



Presenter Notes
Presentation Notes
Sigma_E is the standard deviation of the pulse with profile E.  If E is complex, that E^2->|E|^2
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Extended Systems
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Young, Sarovar, Léonard, Phys. Rev. A (2018).




Photon Number Resolution

Simple array:
(Even worse than this because two

(efficiency)N , _
photons can hit the same pixel)
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Significant improvement by structuring the system




Design of Physical Realizations for High Performance PNR

Forster energy transfer
~ picoseconds
~ 100% efficiency

Young, Sarovar, Léonard, ACS Photonics (2020).
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Experiments Towards Novel Designs

-nanotube
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Bergemann & Léonard, Small (2018)



Presenter Notes
Presentation Notes
Both measurements on aligned arrays
Devices turn on at negative gate bias (p-type behavior)
Left: dark current in black, seeing decrease in photocurrent with increase in light 50% red, 100% blue
Refer to Kevin’s talk -> observe same behavior; devices turn off upon illumination
DB106-PB, much smaller change  significantly less sensitive than DR1-PB
At approximately the same power




Bio-Inspired Design
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Functionalized Carbon Nanotube Transistors

chromophore-nanotube hybrid
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Gain > 10* at room temperature




C.o/CNT System Achieves Ultrahigh Gain at Room Temperature
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Bergemann & Léonard, Small (2018)




C.o/CNT System Achieves Ultrahigh Gain at Room Temperature
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» Responsivity > 108 A/W
» Gain > 108
» Sensitive to UV, visible, and IR

Bergemann & Léonard, Small (2018)




Algy (nA)

Response to Weak Light Pulse

Device with only one CNT
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. . . Detection of 200 photons

0 100 200 300 at room temperature
Time (ms)

Detection of 40-50 photons per CNT
at room temperature

Bergemann & Léonard, Small (2018)
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Presentation Notes
Perhaps better title for slide?


Energy Levels (e
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Detection of 8-13 photons/CNT

Bergemann & Léonard, ACS Nano (2021)




Frequency-Resolving Single Photon Detection
Example applications for high-energy physics

Reconstruction of photon trajectories in Cosmology: resolving emission lines from galaxies
liquid scintillator detectors

The DESI Experiment Part II: Instrument Design
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Figure 7.10: A quicksim simulation of the [OII] emission line doublet at a limiting flux of
F([OT])=0.8 % 107 ergs s~ em™2 (top) and the median case of F([O1I))=1.4 % 10~'% ergs s—*
em 2 (bottom) for a reference 1000 second exposure. The simulated emission lines have a velocity
width of 70 km/s and a ratio of 1 : 1.3. The red curves represent the input spectra at the resolution

1 h ff. 1 of the instrument, (expected number of collected photons per pixel row), and the blue squares a
H Ig E I C I e n Cy random r:.-alizatiun of the data with noise.
Low jitter
High Frequency resolution

High Efficiency
High Frequency resolution




Subwavelength Elements Collectively Interacting with Photon Field

Existing approaches:

MUSE integral field spectrograph
European Southern Observatory

New approach:

K | readout |
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100% efficiency, minimal jitter
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Must still account for collective
interaction — the number/optical
couplings of elements must be tuned
together to ensure efficiency at each
frequency
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Frequency-Resolving Single Photon Detection

hOPONJd POPOO(
hODOD( POOOO(

DOAOAOOC DO

NG&)

wo(eV)
2.4

1.9 2.9

n;y4/Q
o o
= 8]

0.8 -

0.6 4 wo =2.09eV
 wp=2.51eV
B o =2.97eV

i}:
Ay

0.4 1

Frequency bins

Young, Sarovar, Léonard, arXiv.

>99% efficiency
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-High efficiency
-Low jitter
-High frequency resolution
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Summary

New modeling framework allows evaluation and design of photodetectors
Novel designs emerge with improved performance

Testing of these designs has already led to ultrahigh gain at room temperature

Future Work

Develop approaches to reduce noise in experimental systems
Test new molecule/nanotube combinations
Integrate with CMOS
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Presenter Notes
Presentation Notes
DR1 only on aligned arrays
AFM conductivity tests on single nanotubes
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