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ABSTRACT  

A machine learning (ML)-TCAD algorithm is im-

plemented to obtain the target bias solution of dynamic 

random access memory (DRAM) cells efficiently, 

which are generated by introducing geometric fluctua-

tions into the ideal cell structure. The light gradient 

boosting machine (LGBM) trained on the electrostatic 

potential profiles of DRAM cells is used to predict the 

initial solutions at specific bias conditions. The model is 

trained with 300 simulation results. Using the proposed 

method, solutions for 1,000 devices at a target bias are 

obtained quickly. 

INTRODUCTION 

Geometric fluctuations during DRAM manufactur-

ing obviously affect transistor performance and yield 

[1]. Therefore, a simulation considering these variations 

is important, but it requires a lot of computational time. 

Since the device characteristics are sensitive to geomet-

ric fluctuations, a perturbative approach is difficult to 

apply and we must perform the full device simulation 

for each device. To overcome this drawback, the ML-

TCAD framework has been widely used in this field 

recently [2]. However, sophisticated and high-level 

ML/AI models such as CNN and U-net are required. 

 In this work, we propose an efficient simulation 

flow using an easy-to-use Light Gradient Boosting 

Machine (LGBM) [3] to obtain the target bias solutions 

of DRAM cells with geometric fluctuations.  

LGBM MODEL AND RESULTS 

We built an LGBM model to predict the electrostat-

ic potential profile of 6F2 DRAM in Fig. 1. As shown in 

Fig. 2, device parameters (LG1,2, Lov, Tox, Hfin, Riso, Nsd, 

and Nch) and spatial parameters (x, y, z coordinates) are 

used as input parameters to the model. The electrostatic 

potential profile at a given position is obtained as an 

output. For high accuracy of the model, spatial parame-

ters are preprocessed using the K-means clustering.  

The entire simulation procedure to obtain the target 

bias solution of DRAM cells is shown in Fig. 3. First, 

an LGBM model is trained using the electrostatic poten-

tial profiles of 300 DRAM cells, which are generated by 

introducing geometric fluctuations into the ideal cell 

structure. These profiles are obtained with our in-house 

simulator, G-Device [2]. The drift-diffusion model is 

solved with the doping-dependent mobility model (Ma-

setti), the inversion layer mobility model (Lombardi), 

the high-field saturation model, the Shockley–Read–

Hall recombination (field enhancement) model, and the 

band-to-band tunneling model [4].  

Secondly, for a test set (device and spatial parame-

ters for 1,000 devices), the trained model predicts the 

initial solutions and these initial solutions are loaded. 

Finally, a numerical simulation is conducted directly at 

the target bias step, without any bias ramping procedure. 

If the simulation does not converge, a solution of the 

failed device is calculated by a conventional simulation 

with the bias ramping procedure. The LGBM model is 

retrained with that solution. This process made it possi-

ble to make highly accurate predictions for device with 

a wide range of parameters. 

Figs. 4 and 5 show that our simulation flow is more 

efficient than the conventional bias ramping method in 

terms of the number of iterations required to obtain the 

target bias solution. The computational cost can be 

significantly reduced by avoiding unnecessary ramping 

steps. As a result, the target bias solutions of DRAM 

cells can be calculated within (at least) 13 times fewer 

Newton iterations. 

CONCLUSION 

We have proposed the efficient simulation flow to 

obtain the target bias solutions of 6F2 DRAM cells with 

geometric fluctuation. The proposed simulation flow is 

highly efficient in analyzing the devices with these 

variations at a target bias. Compared with the conven-

tional bias ramping procedure, the computational time 

can be significantly (at least 13 times) reduced.   
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LG1,2
20 ~ 34 nm

Tox
2 ~ 6 nm

Hfin
27 ~ 34 nm

Riso
-4 ~ 4 nm

Lov
15 ~ 35 nm

Nsd
8.40 ~ 1.16 
X 1020 cm-3

Nch
1.31 ~ 1.69 
X 1018 cm-3
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Fig. 1.  (a) Schematics of the BCAT DRAM structure, (b) front 

side of structure, (c) view of a cross section cut by plane (1). Table 

I. Ranges of structure parameters.  

Fig. 2. Distributions of 1300 device parameters (LG1,2, Lov, 

Tox, Hfin, Riso, Nsd, and Nch).  
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Fig.4. Distribution of the number of iterations for 1,000 

devices, when the proposed method is applied at VG = 2.0 V, 

VD = 1.5 V, and VBB = -0.8 V. 

Fig. 5. Comparison of the average number of Newton iterations of 

the two methods at VG = 2.0 V, VD = 1.5 V, and VBB = -0.8 V. Our 

method converges within (at least) 13 times fewer iterations. 
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Fig. 3. Schematic for the entire process of ML-TCAD framework. (a) Training phase. The spatial parameters were preprocessed by 

K-means clustering, and high-accuracy model was bulited by adding cluster information to the input parameters. (b) Inference 

phase. The incremental training is used to make highly accurate predictions for device with a wide range of parameters. 


