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Abstract—High performance computing methods are
needed for the time-dependent analysis of carrier transport
within nano structures when using density matrix formu-
lations. For this purpose, a discontinuous Galerkin (DG)
method for the numerical approximation of Quantum-
Liouville type equations is presented.

INTRODUCTION

The main advantage of the DG method is its depen-
dency on matrix-vector-multiplications when performing
transient calculations allowing a parallelization of the
resulting algorithms. This has already been successfully
demonstrated in other fields of research like in computa-
tional fluid dynamics [1]. Hence, the aim of this work is
to propose an algorithm based on a Quantum-Liouville
type equation not only considering a spatially constant
but spatially varying effective mass distribution and a
self-consistent Hartree-Fock potential as well.

METHODOLOGY

Starting with the von Neumann equation in center-
mass coordinates x and &, a Finite Volume (FV) tech-
nique is applied onto the center mass coordinate &,
followed by an expansion of the density matrix based
on plane waves, arriving at a Quantum-Liouville type
equation [2]. The DG method is used in x-direction
resulting in a hybrid method [3]. Along with the spatially
varying effective mass different numerical fluxes [1]
occur, which in combination with boundary conditions
as well as the complex absorbing potential (CAP) [4]
have a critical influence on the stability of a transient
DG method.

DISCUSSION

To assess the stability, the eigenvalues of the resulting
system matrix must be analyzed. As depicted in Fig. la-
1d in combination with Tab. I, two factors have a
crucial influence on the stability of the DG scheme:
the numerical flux and the CAP. The CAP pushes the
eigenvalue spectrum towards the negative half of the

real axis. The choice of an upwind flux further ensures
stability by avoiding eigenvalues with a positive real
part. Finally, stability can be achieved. To asses the
numerical validity of the proposed scheme, a resonant
tunneling diode (RTD) is analyzed as depicted in Fig. 2.
The self-consistent analysis for the thermal equilibrium
is performed for the case of a spatially constant and a
spatially varying effective mass. Evidently, from Fig. 3 it
can be concluded that the inhomogeneous effective mass
leads to a higher local maximum, which is in agreement
with the results in [5]. Furthermore, the self-consistent
transient simulation of the RTD with a spatially constant
effective mass is depicted in Fig. 4 confirming conver-
gence. Finally, from Fig. 5 it can be concluded that
performing a transient simulation, a noticeable reduction
in computation time compared to a conventional FV
approach, as described in [5], can be achieved with the
DG and fourth order Runge-Kutta (DGRK4) algorithm.
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Fig. 1: Stability analysis for the central flux with no CAP (a),
central flux with CAP (b), upwind flux with no CAP (c), and
upwind flux with CAP (d). The real part of the eigenvalues
must be exclusively located in the second and third quadrant
of the complex plane. The right vertical line indicates the
imaginary axis.

Fig.a | Fig.b | Fig.c Fig. d
Rmaz (k) | 0.1265 \ 0.0504 \ —3.18e — 7 \ —0.0015
Romin(k) | —7.1083 ‘ —7.7918 ‘ —13.0494 ‘ —13.6978
TABLE I: Maximum and minimum real part of the

eigenvalues from Fig. la-1d.
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Fig. 2: Schematic representation of a resonant tunneling diode
showing the band edge potential and the spatially varying
effective mass my.
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Fig. 3: Self-consistent carrier distribution n dependent on
x in a RTD with homogeneous mass distribution (my) and
inhomogeneous mass distribution (1m;p,).
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Fig. 4: Spatially time dependent self-consistent carrier distri-
bution n for a mass distribution m;,, dependent on Y.
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Fig. 5: Comparison of the computation time between the
DGRK4 algorithm and the FV-Crank Nicolson (FVCN)
scheme [5]. N¢ indicates the number of {-elements.



