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This work investigates a physics-informed 

learning algorithm to solve the multi-dimensional 

Schrödinger equation for nanostructures based on 

the quantum element method (QEM) [1]. The QEM 

selects generic building blocks of a group of 

nanostructures as elements, each of which is trained 

by proper orthogonal decomposition (POD) to 

generate its basis functions (or POD modes). To 

simulate a large structure, these trained elements are 

then stitched together using the discontinuous 

Galerkin method. Such a multi-element approach 

minimizes the training effort, optimizes parallel 

computing efficiency, and offers cost-effective 

simulation and design of nanostructures. 

POD trains the modes to maximize the mean 

square inner product with the wave function (WF) 

data collected from direct numerical simulation 

(DNS) of the Schrödinger equation. Each element 

is trained to account for variations of electric fields 

or potentials and adjacent elements. This POD 

process leads to the Fredholm equation [2], 

∫ 〈𝜓(𝑟) ⊗ 𝜓(𝑟′)〉
Ω′

 𝜂(𝑟′)𝑑Ω′ = 𝜆𝜂(𝑟′)   (1) 

where 𝜂𝑗 is the POD mode, 𝜓 is the WF and 𝜆 is an 

eigenvalue. The eigenvalues of the POD modes 

indicate the amount of information captured.  

After generating the POD modes, the WF can be 

formed via a linear combination of M modes,  

𝜓(𝑟) = ∑ 𝑎𝑗𝜂𝑗(𝑟)𝑀
𝑗=1           (2) 

where 𝑎𝑗 is the weight. The weights are found via 

the Galerkin projection of the Schrödinger equation 

onto the POD modes. This projection provides 

physical guidance based on first principles to reach 

an efficient and accurate learning method.  

Using the QEM for a system of  𝑁𝑒𝑙 elements, 

the Hamiltonian equation in POD space is found, 

∑ (𝑇𝑛𝑝,𝑖𝑗 + 𝑈𝜂𝑝,𝑖𝑗) 𝑎𝑝,𝑗 + ∑ ∑ 𝐵𝑝,𝑝𝑞,𝑖𝑗𝑎𝑝,𝑗  
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+ ∑ ∑ 𝐵𝑝𝑞,𝑖𝑗𝑎𝑝,𝑗 
𝑀𝑞

𝑗=1
𝑁𝑒𝑙
𝑞=1,𝑞≠𝑝 = 𝐸𝑎𝑝,𝑖 ,  (3) 

where 𝑇𝑛𝑝,𝑖𝑗  and 𝑈𝜂𝑝,𝑖𝑗  are the interior kinetic 

energy and potential energy matrixes for the 𝑝𝑡ℎ  

element composed of 𝑀𝑝 modes. 𝐵𝑝,𝑝𝑞,𝑖𝑗  is the 

diagonal boundary kinetic energy matrix and 𝐵𝑝𝑞,𝑖𝑗 

is the off diagonal kinetic matrix [1]. 

Three GaAs/InAs quantum-dot (QD) structures 

given in Fig. 1(a) are used to train 3 elements, 2 

hexagon QD elements (see E2 and E3 in Fig. 2(a)) 

and one spacer element (E1 in Fig. 2(a)). Each 

training structure in Fig. 1(a) is subjected to 10 

single component electric fields in x and y varying 

between [−35, 35]𝑘𝑉/𝑐𝑚. At each field, only WFs 

of the first 6 quantum states (QSs) are collected 

from DNS with a mesh size of 14966. Data 

collected from the same elements are combined to 

generate POD modes to account for more variations 

of BCs (i.e., adjacent elements). 

To test the QEM method, a test electric field 𝐸⃗⃗ 

= (25𝑥̂ + 15 𝑦̂) 𝑘𝑉/𝑐𝑚  was applied to the structure 

in Fig. 1(b). Around the 7th to 15th mode, the POD 

eigenvalues of all elements in Fig. 2(a) reduce from 

the first mode by more than 3 orders of magnitude. 

Figs. 2(b) and 2(c) reveal that the POD least square 

(LS) error is near 1% (or 2%) using just 10-15 (or 

8-12) modes per element and the eigenenergies 

from QEM and DNS are nearly identical. |𝜓|2 

profiles of several QSs given in Fig. 3 illustrate the 

excellent agreement between the QEM and DNS 

using only a handful of modes (DoF) per element. 

This study found that the QEM offers a 2-order 

reduction in computational time, compared to DNS.  
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Fig. 1. (a) Three training structures used to train the 3 elements shown in Fig. 2. (b) Test structure used to verify the QEM model.  

  

 

Fig. 2. (a) Eigenvalues of the three generic elements. (b)LS error for QSs 1-6. (c) Error in the QEM eigenenergy relative to DNS. 

 

 

 

 

    

Fig. 3. (a) Profile plots in x (top row) and y (bottom row) for the |𝜓|2 of QSs 1,2 ,5 and 6 along the horizonal and vertical plotting 

paths (red lines) shown in (b). The paths were selected to show the maximum probability density in the state. 

 


