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INTRODUCTION 
Hardware accelerators for neuromorphic 

computing are in large demand. It is widely accepted 
that analog circuits could implement neural 
networks far more efficiently than the now 
omnipresent digital circuits, and they are better 
suited for analog sensory inputs. Despite this, analog 
circuits do not enjoy widespread adoption as it is 
difficult to implement robust, low-power analog 
circuitry in a deeply-scaled CMOS technology. 

Oscillatory Neural Networks (ONNs) may be 
free from impediments of traditional analog circuitry 
[1], and they are also realizable by relatively 
straightforward nanoscale hardware. ONNs are 
however disadvantaged by the fact that only very 
few applications have been realized by them sos far, 
and these applications require fully connected 
networks, which are not easily scalable to larger 
numbers of oscillators.  

In this work, we demonstrate how state-of-the-art 
ONNs can be designed by machine learning 
techniques, opening the way to new applications and 
simple, realizable network topologies. As an 
example, we demonstrate a Hopfield-network-like 
associative memory [2] that uses only nearest 
neighbor interconnections and that significantly 
outperforms Hopfield nets trained by Hebbian 
learning method. 

DESIGN OF ONNS BY BPTT 
Backpropagation through time (BPTT) is a 

numerical technique to engineer the parameters of a 
dynamical system for a particular task. In order to 
use BPTT on an ONN circuit, we built a differential-
equation-based compact model of ring oscillators 
(ROs), following [3]. This model is solved by 
torchdiffeq [4], in such a way that BPTT can run on 
the computational tree. This computing framework 
can automatically design the resistors which 
interconnect ROs so that the RO phases converge to 
a certain pattern. For a simple two RO case the 
procedure is illustrated in Fig 1.  For many 

oscillators the BPTT can be used to engineer the 
couplings in such a way that classification on the 
MNIST database [5] is achieved. To test our method 
on MNIST each pixel of the input handwritten digits 
is applied as an input phase to nearest-neighbor 
connected oscillator network on a 14x14 grid.  

The loss function can be defined so that the 
ONN acts as an associative memory – in that case 
phases representing the handwritten digits should 
converge to the image of an ideally-shaped digit. 
The resulting network is functionally equivalent a 
to a fully-interconnected Hopfield network trained 
by Hebbian learning, but performs this function 
using much fewer interconnections (see Fig. 2) and 
at a higher rate of correct classification. 

Alternatively, the classification can be done by 
summing up oscillator outputs and recognize digits 
by the appearance of a high-amplitude output 
signal (see Fig. 3). For a single layer, the network 
achieves a 70% classification accuracy on the 
MNIST dataset, but an accuracy above 92% can be 
achieved by adding a very simple second classifier 
layer consisting of only 40 neurons. 

In conclusion, we developed an ‘in silico’ 
training method for ONNs. The designed network 
can act as an energy efficient first layer of a 
neuromorphic processing pipeline.  
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Fig 1. Machine learning the phase relations in a two-oscillator system. In order to couple the two Ros in phase, their 
like nodes should strongly couple, meaning that the R+ resistance should be small and R- large. For anti-phase 
coupling, R- should couple strongly, while R+ should be large. The machine learning algorithm adjusts the 
resistances until this state is reached, as shown in b) and c). 

 
 
 

 
 

 
 
 

Fig 2. Associative function in a nearest-neighbor interconnected 
ONN. The images show the phase with respect to a reference 
oscillator. In most (but not all) cases the distorted digits 
(handwritten images) converge to the target digits. 

Fig 3. It is possible to get a single classification output by 
summing up all oscillator nodes. With appropriate learning 
parameters, this configuration leads to the highest accuracy. 

 


