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An Al4SiC4 ternary carbide has become a promising wide
band-gap semiconductor for the semiconductor industry over
the last decade because of its emerging properties [1]. A crys-
tal structure of Al4SiC4 is illustrated in Fig. 1. The Al4SiC4
band-gap has been calculated to be 2.48 eV [2, 3] thus opening
a possibility for the design of carbide heterostructure devices
in a combination with 4H-SiC or 3C-SiC. These heterostruc-
ture carbide devices could potentially resolve issues with the
large interface density of states at the semiconductor interface
with a dielectric layer leading to a low inversion carrier mobil-
ity in SiC MOSFETs [4]. Other remarkable properties include
superior oxidation resistance [5], superior wear resistance, low
weight, high strength, and high thermal conductivity [6].

In this work, an ensemble Monte Carlo (MC) simulation
code is developed to investigate the electron transport in bulk
Al4SiC4. Al4SiC4 has a wurzite lattice [2,3] as shown in Fig. 2.
We assume that the two lowest valleys will play a role in elec-
tron transport. The M-valley has also six locations contributing
one-half (a total of 3 equivalent valleys). The K-valley has six
locations contributing one-third to the 1st Brillouin zone (a total
of 2) as shown in Figs. 3 ad 4. Therefore, a two-valley non-
parabolic anisotropic bandstructure model is employed with
the M-valley to be a minimum and the second K-valley to be
0.52 eV above as illustrated in Fig. 5. The electron interac-
tions with polar and non-polar phonons within and between M-
and K-valleys are listed in Table 1. The material parameters
in Table 2 use a mix of experimental and theoretical sources
like optical phonon energies extracted from IR/Raman spec-
troscopy [3].

Valley Transition Scattering Type
M1 M1 → M1 Intra Polar

M1 → M2,3 Inter Non-Polar
M1 → K Inter Non-Polar

M2 M2 → M2 Intra Polar
M2 → M1,3 Inter Non-Polar

M2 → K Inter Non-Polar
M3 M3 → M3 Intra Polar

M3 → M1,2 Inter Non-Polar
M3 → K Inter Non-Polar

K K → M1 Inter Non-Polar
K → M2 Inter Non-Polar
K → M3 Inter Non-Polar

Table 1: Electron-phonon scattering transitions considered in the MC
model.

Finally, M-valley k-vector (inverse) transformations to a
spherical space (denoted by ∗) within the anisotropic analyt-

Table 2: Al4SiC4 material parameters considered in the MC simula-
tions.

Parameter [Unit] Value
Mass Density [g/cm3] 3.03 a

Lattice Const. [Å] 3.28 a

Piezoelectric Const. [C/m2] 0.47 a

Longitudinal Acoustic Velo. [m/s] 10577 a

Transverse Acoustic Velo. [m/s] 6431 a

Polar Opt. Phon. Energy [meV] 67.32 b, 107.24 b

Non-Polar Opt. Phon. Energy [meV] 85.55 b

Acoustic Def. Potential [eV] 11.4 c

Indirect Band Gap for the M-valley E(M)
G = 2.78

(M) & the K-valley (K) [eV] E(K)
G = 3.30 a

Electron Effective Masses [me] m∗(M)
l = 0.568 d

m∗(M)
t = 0.695 d

m∗(K)
l = 1.057 d

m∗(K)
t = 0.936 d

aRef. [2]. bRef. [3]. cAverage taken from [7]. dExtracted value
from DFT calculations [2]. me is the rest mass of an electron.

ical model use a combination of Herring-Vogt and rotational
transformations [8] as:

k∗x(kx) = kx(k∗x)cos(θ)− (+)ky(k∗x)sin(θ) (1)

k∗y(ky) = ky(k∗y)cos(θ)+(−)kx(k∗y)sin(θ) (2)
k∗z (kz) = kz(k∗z ) (3)

The MC simulations in Figs. 6 and 7 predict that Al4SiC4
will have a maximum electron drift velocity of 1.35×107 cms−1

at an electric field of 1400 kVcm−1 and a maximum electron
mobility of 82.9 cm2V−1s−1. Fig. 8 shows the electron mo-
bility dependence on ionized impurity concentration. The av-
erage electron kinetic energy and valley occupation are plotted
in Figs. 9 and 10, respectively.
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Fig. 1: A crystal structure of
Al4SiC4. The blue, yellow, and
black spheres represent Al, Si, and
C atoms, respectively.
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Fig. 2: A schematic of hexagonal bandstruc-
ture of Al4SiC4 in the k-space showing a lo-
cation of principal valleys.
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Fig. 3: The hexagonal (0001)
kx −ky plane of Al4SiC4 showing a
location of principal valleys.
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Fig. 4: Detail of locations of the M-
valleys in the (0001) plane within
the Al4SiC4 hexagonal structure,
where θ =±60◦ or π/3.

Fig. 5: A schematic of conduction band minimum val-
leys for Al4SiC4 showing details of the number of
equivalent M- and K- valleys, the separation between
valleys, and the electron—non-polar phonon interac-
tions considered in the transport model.
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Fig. 6: Electron drift velocity as a function of applied
electric field in a bulk Al4SiC4. The velocity obtained
assuming an anisotropic (red squares) and a simpler
isotropic (blue circles) bandstructure are shown.
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Fig. 7: Electron mobility as a function of applied elec-
tric field in a bulk Al4SiC4. The mobility obtained
assuming an anisotropic (red squares) and a simpler
isotropic (blue circles) bandstructure are plotted.
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Fig. 8: Electron mobility as a function of ionized im-
purity concentration in a bulk Al4SiC4.
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Fig. 9: Average kinetic energy as a function of applied
electric field in a bulk Al4SiC4.
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Fig. 10: Valley occupancy of electrons in the M- and
K-valleys vs. applied electric field in bulk Al4SiC4.

2


