Monte Carlo Simulations of Electrons in Al₄SiC₄ Ternary Carbide

K. Kalna¹ and D. Chaussende²

¹ NanoDeCo Group, Dept. Electronic & Electrical Engineering, Faculty of Science & Engineering,

² Université Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France

Email: k.kalna@swansea.ac.uk

An Al₄SiC₄ ternary carbide has become a promising wide band-gap semiconductor for the semiconductor industry over the last decade because of its emerging properties [1]. A crystal structure of Al₄SiC₄ is illustrated in Fig. 1. The Al₄SiC₄ band-gap has been calculated to be 2.48 eV [2, 3] thus opening a possibility for the design of carbide heterostructure devices in a combination with 4H-SiC or 3C-SiC. These heterostructure carbide devices could potentially resolve issues with the large interface density of states at the semiconductor interface with a dielectric layer leading to a low inversion carrier mobility in SiC MOSFETs [4]. Other remarkable properties include superior oxidation resistance [5], superior wear resistance, low weight, high strength, and high thermal conductivity [6].

In this work, an ensemble Monte Carlo (MC) simulation code is developed to investigate the electron transport in bulk Al₄SiC₄. Al₄SiC₄ has a wurzite lattice [2,3] as shown in Fig. 2. We assume that the two lowest valleys will play a role in electron transport. The M-valley has also six locations contributing one-half (a total of 3 equivalent valleys). The K-valley has six locations contributing one-third to the 1st Brillouin zone (a total of 2) as shown in Figs. 3 ad 4. Therefore, a two-valley nonparabolic anisotropic bandstructure model is employed with the *M*-valley to be a minimum and the second *K*-valley to be 0.52 eV above as illustrated in Fig. 5. The electron interactions with polar and non-polar phonons within and between Mand K-valleys are listed in Table 1. The material parameters in Table 2 use a mix of experimental and theoretical sources like optical phonon energies extracted from IR/Raman spectroscopy [3].

Valley	Transition	Scattering Type
M_1	$M_1 ightarrow M_1$	Intra Polar
	$M_1 \rightarrow M_{2,3}$	Inter Non-Polar
	$M_1 \rightarrow K$	Inter Non-Polar
M_2	$M_2 \rightarrow M_2$	Intra Polar
	$M_2 \rightarrow M_{1,3}$	Inter Non-Polar
	$M_2 \rightarrow K$	Inter Non-Polar
<i>M</i> ₃	$M_3 \rightarrow M_3$	Intra Polar
	$M_3 \rightarrow M_{1,2}$	Inter Non-Polar
	$M_3 \rightarrow K$	Inter Non-Polar
K	$K \rightarrow M_1$	Inter Non-Polar
	$K \rightarrow M_2$	Inter Non-Polar
	$K \rightarrow M_3$	Inter Non-Polar

Table 1: Electron-phonon scattering transitions considered in the MC model.

Finally, *M*-valley **k**-vector (inverse) transformations to a spherical space (denoted by *) within the anisotropic analyt-

Table 2: Al_4SiC_4 material parameters considered in the MC simulations.

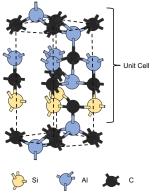
Parameter [Unit]	Value
Mass Density [g/cm ³]	3.03 ^a
Lattice Const. [Å]	3.28 ^a
Piezoelectric Const. [C/m ²]	0.47 ^a
Longitudinal Acoustic Velo. [m/s]	10577 ^a
Transverse Acoustic Velo. [m/s]	6431 ^a
Polar Opt. Phon. Energy [meV]	67.32 ^b , 107.24 ^b
Non-Polar Opt. Phon. Energy [meV]	85.55 ^b
Acoustic Def. Potential [eV]	11.4 ^c
Indirect Band Gap for the <i>M</i> -valley	$E_{G}^{(M)} = 2.78$
(M) & the K -valley (K) [eV]	$E_G^{(K)} = 3.30^{a}$
Electron Effective Masses $[m_e]$	$m_l^{*(M)} = 0.568 d$
	$m_t^{*(M)} = 0.695 d$
	$m_l^{*(K)} = 1.057 \text{ d}$
	$m_t^{*(K)} = 0.936^{d}$

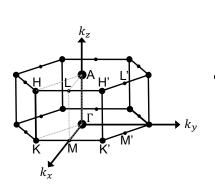
^aRef. [2]. ^bRef. [3]. ^cAverage taken from [7]. ^dExtracted value from DFT calculations [2]. m_e is the rest mass of an electron.

ical model use a combination of Herring-Vogt and rotational transformations [8] as:

$$k_x^*(k_x) = k_x(k_x^*)cos(\theta) - (+)k_v(k_x^*)sin(\theta)$$
(1)

$$k_{\nu}^{*}(k_{\nu}) = k_{\nu}(k_{\nu}^{*})cos(\theta) + (-)k_{x}(k_{\nu}^{*})sin(\theta)$$
(2)


$$k_z^*(k_z) = k_z(k_z^*)$$
 (3)


The MC simulations in Figs. 6 and 7 predict that Al_4SiC_4 will have a maximum electron drift velocity of 1.35×10^7 cms⁻¹ at an electric field of 1400 kVcm⁻¹ and a maximum electron mobility of 82.9 cm²V⁻¹s⁻¹. Fig. 8 shows the electron mobility dependence on ionized impurity concentration. The average electron kinetic energy and valley occupation are plotted in Figs. 9 and 10, respectively.

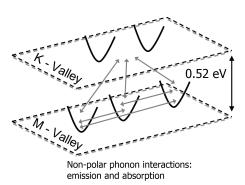
References

- [1] T. Liao, J. Y. Wang, and Y. C. Zhou, Phy. Rev. B 74 (17), 1098-1121 (2006).
- [2] L. Pedesseau et al., APL Materials 3 (12), 121101 (2015).
- [3] D. Zevgitis et al., Synthesis and Characterization of Al₄SiC₄: A "New" Wide Band Gap Semiconductor Material, Materials Science Forum 821-823, 974-977 (2015).
- [4] S. Forster, D. Chaussende, and K. Kalna, ACS Appl. Energy Mater. 2 (9), 3001-3007 (2020).
- [5] K. Inoue and A. Yamaguchi, J. Am. Ceram. Soc. 86 (6), 1028-1030 (2003).
- [6] W. Y. Ching, and P. Rulis, Electronic Structure Methods for Complex Materials: The Orthogonalized Linear Combination of Atomic Orbitals, OUP Oxford, 2012.
- [7] H. Iwata and K. M. Itoh, J. Appl. Phys. 89 (11), 6228-6234 (2001).
- [8] S. Forster, D. Chaussende, and K. Kalna, ACS Appl. Energy Mater. 2 (1), 715-720 (2019).

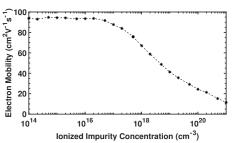
Swansea University, Swansea, SA1 8EN, Wales, United Kingdom

black spheres represent Al, Si, and cation of principal valleys. C atoms, respectively.

Fig. 1: A crystal structure of Fig. 2: A schematic of hexagonal bandstruc- Fig. 3: The hexagonal (0001) Fig. 4: Detail of locations of the M-Al₄SiC₄. The blue, yellow, and ture of Al₄SiC₄ in the **k**-space showing a lo- $\mathbf{k}_{\mathbf{x}} - \mathbf{k}_{\mathbf{y}}$ plane of Al₄SiC₄ showing a


location of principal valleys.

valleys in the (0001) plane within


the Al₄SiC₄ hexagonal structure,

where $\theta = \pm 60^{\circ}$ or $\pi/3$.

50 Electron Mobility $(cm^2 v^{-1} s^{-1})$ 01 02 02 02 04 --- Isotropic - Anisotropic 0 0 100 200 300 400 500 Applied Electric Field (kV cm⁻¹)

valleys, and the electron-non-polar phonon interac- isotropic (blue circles) bandstructure are shown. tions considered in the transport model.

purity concentration in a bulk Al₄SiC₄.

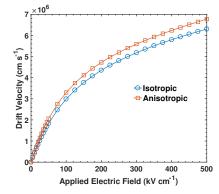


Fig. 5: A schematic of conduction band minimum val- Fig. 6: Electron drift velocity as a function of applied leys for Al₄SiC₄ showing details of the number of electric field in a bulk Al₄SiC₄. The velocity obtained equivalent M- and K- valleys, the separation between assuming an anisotropic (red squares) and a simpler

Fig. 7: Electron mobility as a function of applied electric field in a bulk Al₄SiC₄. The mobility obtained assuming an anisotropic (red squares) and a simpler isotropic (blue circles) bandstructure are plotted.

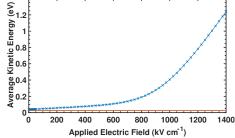
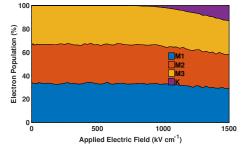



Fig. 8: Electron mobility as a function of ionized im- Fig. 9: Average kinetic energy as a function of applied Fig. 10: Valley occupancy of electrons in the M- and electric field in a bulk Al₄SiC₄.

K-valleys vs. applied electric field in bulk Al₄SiC₄.

2