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4H-SiC has been widely used in many power
electronic applications because of the extremely
high critical electric field and good electron mobil-
ity. For example, 4H-SiC possesses a critical elec-
tric field ten times higher than that of Si, which
allows high-voltage blocking layers composed of
4H-SIiC to be approximately a tenth of the thick-
ness of a comparable Si device. This, in turn, re-
duces the device on-resistance and power losses
while maintaining the same high blocking capabil-
ity.

Unfortunately, commercial TCAD tools like
Sentaurus and Silvaco are based on the effective
mass approximation, while most 4H-SiC devices
are operated under high electric fields, so the para-
bolic-like band approximation does not hold any-
more. Hence, to get more accurate and reliable
simulation results for these devices, full-band
analysis is needed. The first step in the develop-
ment of a full-band device simulator is the calcula-
tion of the band structure. In this work, the empiri-
cal pseudopotential method (EPM) is adopted. We
follow the approach of Ng [1] who utilizes genetic
algorithm to get to a proper set of EPM form fac-
tors that match density functional theory (DFT)
results. The 4H-SiC band-structure used in this
work is shown in Figure 1.

Acoustic, non-polar optical phonon and polar
optical phonon are relevant scattering mechanisms
for this material system [2]. Impurities are intro-
duced into the model as discrete dopants. Coulomb
scattering is treated in real space using the particle-
particle-particle-mesh (P°M) approach [3] and
represents the major novelty of this work. Proper
treatment of the Coulomb interactions is essential
for power electronic applications because of the
high carrier densities. Bi-CGSTAB method is used
for the solution of the 3D Poisson equation.

For proof-of-concept of the methodology
adopted here, a 3D resistor is simulated first [4].
From the resistor simulations, the low-field elec-
tron mobility dependence upon Coulomb scatter-
ing in 4H-SiC devices is extracted. The simulated
mobility results agree very well with available
experimental data [5], which is clearly seen from
the results presented in Figure 2. An anisotropy of
mobility along different crystal orientation is also
observed. The ratio between [0001] and [1120]
direction is found to be between 1.25-1.75. The
field dependence of the carrier drift velocity, com-
pared with experimental data from Ref. [5], is
shown in Figure 3. The observed excellent agree-
ment validates further the adopted theoretical
model. Next, a 3D VDMOS is simulated, a sche-
matic of which is shown in Figure 4. The electron
distribution and the potential profile of the
VDMOS device are shown in Figure 5. The out-
put characteristics of the VDMOS device are
shown in Figure 6. From the results presented we
may conclude that, due to its comprehensive na-
ture, the developed tool can serve as a basis for
future investigation of 4H-SiC power devices.
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Fig. 1. Bandstructure of 4H SiC calculated using
the Empirical Pseudopotential Method.
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Fig. 4. Schematics of a vertical double-diffused
MOSFET (VDMOS) being considered.
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Fig. 2. Electron mobility vs. electric field along
[0001] direction. Triangles denote the experimen-
tal data from Ref. [5]. The dashed line indicates
the model without considering the effect of in-
complete ionization.
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Fig. 5. Electron distribution and electrostatic po-
tential (inset). The applied bias is Ve =40 V and
Vb=20V.
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Fig. 3. Electron drift velocity vs. electric field
along [0001] direction. Triangles denote the
experimental data from Ref. [5]. The dashed line
indicates the model without considering the effect
of incomplete ionization.
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Fig. 6. Representative Ib-Vp (output) characteris-
tics of the example VDMOS from Figure 4.
Channel length is 0.5 pm.




