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INTRODUCTION 

Since their introduction more than 30 years ago, 

weak values are gradually transitioning from a 

theoretical curiosity to a practical tool in both, 

physical and computational experiments, allowing 

an unprecedented characterization of quantum 

systems. Weak values can provide information of 

quantum systems beyond those provided by the 

traditional expectation or correlation values of  

Hermitian operators. As such, they open an 

unexplored paradigm to give experimentally 

meaningful microscopic properties to nanoscale 

systems in computational simulations. Several 

examples will be presented in this workshop [1-5]. 

EXPERIMENTAL AND THEORETICAL WEAK VALUES 

From the experimental point of view, the weak 

value is a complex number that can be obtained in 

the laboratory through a well-defined operational 

protocol, consisting in a weak measurement of a 

property plus a subsequent strong measurement of 

another property, for an ensemble of identically 

prepared quantum systems |Ψ⟩. The novelty of the 

weak values appears when such measured 

properties belong to non-commuting operators [3]. 

From a theoretical point of view, when for example, 

the first (weak) measurement is of the momentum 

linked to the operator �̂�,  and the second (strong) 

measurement is of the position x, the weak value is 

defined as  

      𝑝(𝑥) = ⟨x|�̂�|Ψ⟩/⟨𝑥|Ψ⟩ , 

which can be interpreted as a distribution of 

momenta along the position x. This weak value 

turns out to coincide with the (Bohmian) velocity in 

Bohmian theory [3]. In fact, the computation of 

momentum weak values (post selected in position) 

appears quite naturally in different formulations of 

quantum hydrodynamics.      

 

NOVEL CHARACTERIZATION OF NANOSCALE 

SYSTEMS  

In this workshop, we will present several examples 

where these weak values allow the computational 

simulation (and thus prediction) of empirical 

properties of nanoscale systems, that were 

seemingly inaccessible from standard expectation 

or correlations values. Among others, they allow: 

(i) A natural extension of the classical Monte Carlo 

technique for electron transport to quantum systems 

through well-defined trajectories [1]. See Fig. 1.           

(ii) Pure-state “unravellings” in non-Markovian 

open quantum systems, using conditional states [4].   

(iii) A non-contextual definition of the quantum 

work operator for quantum thermodynamics [3], 

and of two-time correlations for non-commuting 

observables [3].   

(iv) The computation of the dwell-time in the active 

region of nanoscale devices [2] (see an example for 

graphene in Fig 2).  

(v) The understanding of quantum thermalization of 

many-body systems, by distinguishing two 

components of the kinetic energy [5]. See Fig. 3.  

CONCLUSION 

Weak values allow us to simulate new practical 

properties that can be later tested in the laboratory. 

As such, we argue that they will become essential 

tools for computational nanotechnology in the 

forthcoming years. 
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Fig. 1: (a) Schematic representation of the graphene-based FET, with a channel composed of a single-crystal monolayer 
graphene. (b) The high frequency lines are the instantaneous currents (time-averaged at a window of 0.03 ps) as a 
function of time, computed from the dynamics of Bohmian trajectories. The straight lines are due to a wider averaging 
window of 4 ps, where we can clearly assert the binary response. We can conclude that 4 ps is a reasonable operating 
time for the transistor.

 

Fig. 2: A conditional wave packet in graphene impinges upon a barrier (shaded orange region) suffering Klein 

tunneling with an incident angle of zero degrees (a) and 15 degrees (b). The ability to use trajectories allows us the 

unambiguous definition of the dwell time of electrons in graphene, as seen in (c) for the incident angle of (a) as a 

function of the central energy of the wave packet. Such a time, unambiguously computed from measurable weak 

values, directly determines the high frequency behavior of nanoscale devices.  

 

 
Fig. 3: (a) Expectation and correlation values of the dynamics of two particles in an harmonic trap. Left panels: a few 
initial cycles under no disorder showing a periodic behavior; Right panels: whole dynamics under disorder showing 
thermalization. Panels (a), (b) for kinetic energies comparison: Orthodox ⟨K⟩, Bohmian ⟨KB⟩, quantum potential ⟨QB⟩ 
energies. Panels (c), (d) for correlations: momentum Cp1,p2, Bohmian velocity Cv1,v2, osmotic velocity Cu1,u2, 
position Cx1,x2 correlations. The result ⟨K⟩/2= ⟨KB⟩=⟨QB⟩ is a signature of thermalization, even when ⟨K⟩ is 
constant, that can only be accessed through weak values. 
 


