Thermal and electrical properties of nanocrystalline superionic Na_xCu_{1.75}S (x=0.1, 0.15, 0.2, 0.25) compounds

M.M. Kubenova^{*}, K.A. Kuterbekov, M.Kh. Balapanov, A.M. Kabyshev, K.Zh. Bekmyrza, Zh.A. Mukhan and A.K. Kulanov

L.N. Gumilyov Eurasian National University, 010008 Astana, Kazakhstan

e-mail: kubenova.m@yandex.kz

The paper presents the results of the studies of thermal properties of nanocrystalline superionic $Na_{x}Cu_{1.75}S$ (x = 0.1, 0.15, 0.2, 0.25) compositions, and preliminary results of Na_{0.1}Cu_{1.75}S using as energy stored cathode material in Na-ion half-cell with NaPF₆ electrolyte and Na anode. The compositions contain a few copper sulfide phases: monoclinic chalcocite Cu₂S, orthorhombic anilite $Cu_{1.75}S$, triclinic roxbyite $Cu_{1.74\div 1.82}S$, also the compositions can contain monoclinic Na₂Cu₄S₃, orthorhombic Na₂S, cubic Cu₂O as inclusion phases. The sizes of powder particles lie in the range from 10 to 113 nm. Differential scanning revealed in calorimetry $Na_{0.1}Cu_{1.75}S$ the endothermic thermal effects with critical temperatures near 123 °C, 422 °C and 442 °C, caused by structural transitions in copper sulfide. Fourth endothermic peak at 323 °C presumably belongs to Na₂S phase. The minimum for the Fermi level at about 420°C is found with using of the e.m.f. E of the electrochemical cell of the Cu/CuBr/Na_{0.10}Cu_{1.75}S/Pt, which corresponds to minimum for the carrier concentration. This conclusion correlates well with the observed conductivity minimum at about 410°C. Electrode material Na_{0.10}Cu_{1.75}S achieved a significant specific energy density 146.5 mAh/g in half-cell assembled from the cathode active material, electrolyte (NaPF₆ in 0.5 mol PC) and Na anode.

The results of X-ray phase analysis of the $Na_{0.15}Cu_{1.75}S$, $Na_{0.20}Cu_{1.75}S$ and $Na_{0.25}Cu_{1.75}S$ samples were described in our recent work [1-3], except for the $Na_{0.10}Cu_{1.75}S$ sample. For example, the powder X-ray diffraction pattern of the $Na_{0.15}Cu_{1.75}S$ sample taken at room temperature is shown in Figure 1 a. This alloy contains next phases: triclinic roxbyite, orthorhombic anilite, monoclinic $Na_2Cu_4S_3$, cubic Cu_2O . Analysis of the

spectrum of Figure 1 a revealed that the main phase of Na_{0.15}Cu_{1.75}S sample is the triclinic roxbyite Cu_{1.8125}S with space group *P* and cell parameters, a = 13.4051(9) Å, b=13.4090(8), c=15.4852(3) Å, $\alpha = 90.022(2)^\circ$, $\beta = 90.021(2)^\circ$, $\gamma = 90.020(3)^\circ$.

ACKNOWLEDGMENT

This research was funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (No. AP14871197).

REFERENCES

- [1] K.A. Kuterbekov et al., Ionics 28 (2022) 4311-4319
- [2] M.M. Kubenova et al., Nanomaterials 11(9) (2021) 2238.
- [3] M.M. Kubenova et al., Eurasian Journal of Physics and Functional Materials 7(1) (2023) 60-72

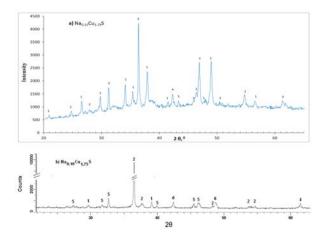


Figure 1. Powder diffraction pattern of the $Na_{0.15}Cu_{1.75}S$ (a), $Na_{0.10}Cu_{1.75}S$ (b) samples taken at room temperature. Digits above pikes denotes: 1-triclinic roxbyite, 2–orthorhombic anilite, 3-monoclinic $Na_2Cu_4S_3$, 4-cubic Cu_2O , 5-monoclinic chalcocite Cu_2S , 6-orthorhombic Na_2S .