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INTRODUCTION

The similarities between electrons traveling bal-
listically in graphene nanostructures and photons
propagating in waveguides has spawned the novel
field of electron quantum optics in graphene con-
strictions. With the ideas of optics-like experiments
in mind, we can think of performing electron in-
terferometry in graphene constrictions, for which
some elementary building blocks, e.g., such as
electron beam splitters, mirrors, etc., are needed.
Remarkably, it has been recently shown that elec-
trons injected in devices formed of two infinite
graphene nanoribbons (GNR) placed one on top of
the other with a crossing angle of 60◦ can be split
into two outgoing waves without reflection [1], [2],
[3]. Moreover, GNRs with zigzag edge topology
are expected to host spin polarized states due to
magnetic instabilities of the localized states at the
edges [4], which make these devices even more
interesting since we can think of performing both
electron and spin quantum optics experiments [5].
With the advent of on-surface synthesis techniques,
now not only atomistic defect-free samples of GNRs
can be produced [6], [7] but also they can be
manipulated.

In this work we propose interesting networks for
studying electron and spin quantum interferometry
built from four crossed GNRs in a pairwise setup
(see Figure 1) that splits the beam into two possible
paths that will self-interfere at the outgoing ports,
where, the resulting interference pattern can be
further tuned by an external magnetic field [8] as a

Fig. 1. Geometry of GNR-based interferometer with the two
interfering paths sketched.

consequence of the Aharonov-Bohm effect [9]. By
means of the mean-field Hubbard model [10], [11]
in combination with the non-equilibrium Green’s
function formalism (NEGF) we are able to describe
the spin dependent transport in this multi-terminal
device. We further show that the scattering ma-
trix formalism in the approximation of independent
scattering at the four individual junctions provides
accurate results as compared with the Green’s func-
tion description, allowing for a simple interpretation
of the interference process between two dominant
pathways.
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