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Introduction: Two-dimensional (2D) semiconducting 

materials have received an enormous amount of attention in 

the last couple of decades. [1] However, high contact 

resistance experienced by 2D material contacts severely 

inhibit practical device applications. Thus, finding methods 

to lower contact resistance is imperative to several 2D 

applications such as improving nanotube performance,[2] 

connecting high-mobility graphene structures through 

metallic contacts,[3] and improving electrical contacts.[4] 

Recently, we found that the permittivity of the surrounding 

material can enhance the Schottky barrier lowering up to 50 

times.[5] Despite the importance of IFBL to the contact 

resistance of devices at the nanoscale, it is often ignored 

when analyzing the Schottky barrier height. However, the 

reason for neglecting IFBL is because to date, there exists 

no way to model the majority of contact geometries with 

the method of images, which requires specific geometric 

symmetry about the metal and the electron. 

 

In this abstract, we present a general solution for 

determining the IFBL energy which can be applied to an 

electron near a geometry of metal with surfaces separated 

by an angle Ω. First, we solve Poisson’s equation using the 

appropriate boundary conditions and then we prove that our 

solution can be obtained using the method of images, 

provided a cone-manifold space is used. 

 

Methods: Figure 1 demonstrates the geometry of a 2D top-

contact, which is experimentally the most prevalent 

approach. It is an example of a contact geometry for which 

there exists no known expression of IFBL because the 

method of images cannot be used. The coordinate system 

used in the derivation is also shown. 

 

We determine IFBL energy by solving Eq. (1) in Figure 6 

as a function of position with (r,θ,z) in addition to the 

location of the exciting electron, (r0, θ0, z0). We are only 

interested in the obtaining VI, or the potential resulting from 

the charge induced on the metal by the nearby electron. 

Thus, we will take the potential of the entire system, V, and 

subtract out the Coulomb potential of the electron, VC., to 

obtain VI, as seen in Figure 2. We assume a solution of the 

form V(r,θ,z) =R(r)Θ(θ)Z(z) and solve Poisson’s equation 

using the Kontorovich-Lebedev transform.[6] Equations 

(2) and (3) demonstrate the resulting solutions for Θ(θ), (2) 

using the boundary conditions for a point charge in free 

space and (3) for a point charge in near a metal wedge. After 

subtracting VC from V, the contributions of the metal are 

isolated and the resulting VI is depicted in Eq. (4). Finally, 

we set r = r0, θ = θ0 and z = z0, and the final equation for 

image potential energy is determined as Eq. (5). 

 

Next, we expand method of images over a non-Euclidean 

space to prove that we can obtain the same result. We 

consider a cone manifold space where we ‘unfold’ our 

metal such that it always appears flat to the electron and an 

image charge can now easily be placed, as illustrated in 

Figure 4. Solving again for Θ(θ), this time with boundary 

conditions that consider the cone manifold space, we obtain 

Eq. (6). The method of images now immediately yields the 

potential for the system by adding the same potential of the 

charge with an opposite sign on the other side of the metal 

plate. The resulting IFBL energy is shown in Eq. (7) and 

can be proven equal to Eq. (5) through trigonometric 

identities. 

 

Results: Figure 3 plots the IFBL with Ω = 3π/2 and ε = 

3.9ε0, which is the permittivity of SiO2. We find that far 

from the corner, the IFBL of a bulk contact is recovered and 

that the IFBL weakens as the corner is approached. From 

visual inspection, we see that the Schottky barrier can be 

lowered by more than 0.1eV due to IFBL, which could 

improve contact resistance by orders of magnitude. In 

Figure 5, we consider several different contact geometries 

and show by how much the IFBL scales compared to a bulk 

contact. We find that the IFBL can be increased by a factor 

of 2.69 relative to a bulk contact provided an optimal 

geometry is used.  

 

Conclusion: In summary, we determined a general solution 

for the IFBL emerging from two metals separated by an 

angle Ω and expand the method of images using a cone 

manifold space. We show that IFBL can provide significant 

improvement to contact resistance and demonstrate how 

fabricating contacts to 2D materials with an optimized 

contact angle should significantly reduce the contact 

resistance. Additionally, because IFBL is scaled by 

permittivity, our results highlight the importance of 

choosing a low-permittivity dielectric surrounding the 2D 

material. 
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Figure 1: Illustration of a metal making a side contact 

to a 2D semiconductor and the coordinate system used 

in our derivation 

 
Figure 2: Graphs taken at z = 0 of (a) VC, the potential caused by a single electron located at (r0, θ0, z0) = (√2, 3𝜋/4, 1), b) 

V, the potential an electron experiences in the presence of a metal wedge with Ω = 3𝜋/2, and c) VI, the attractive potential 

exerted by the metal wedge due to the presence of the electron. Note that VI = V – VC. 

 
Figure 3: Plot of IFBL energy of an electron as a function of x and 

y with Ω = 3π/2 and ε = 3.9ε0, which is the permittivity of SiO2 

 

 
Figure 4: Illustration on how expanding Euclidean space with an 

additional 2Ω − 2π in the metal region yields a cone manifold (right) 

where the method of images can be used. An electron is represented with 

a pink dot; its image with a white dot. 

 

 
Figure 5: Table showing various Ω and θ combinations, 

where Ω indicates the shape of the metal and θ is the 

angle of the semiconductor. We evaluate the resulting 

IFBL energy compared to bulk contact IFBL (a). 

 

 

 
Figure 6: Equations used in the derivation 
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