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The use of magnetic fields for controlling and
manipulating electron states is vital for solid-state
quantum systems [1], [2], requiring comprehen-
sive quantum transport models, able to treat mul-
tiple dimensions and time dependence. Models
based on electromagnetic (EM) potentials depend
on the choice of the gauge and thus the same
holds for the particular numerical approaches. Re-
cently, a Wigner model has been suggested [3],
[4], formulated in terms of general EM fields
E,B, which is thus gauge-invariant. The trans-
port equation involves the terms DF (E) and
HF (B), given by the Fourier transform FT =∫
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So far, there is no numerical and simulation expe-
rience with the general EM equation. In this work,
we provide a first step into this direction by consid-
ering simplifying assumptions. These consider 2D
transport in the x = (x, y) plane, an inhomogeneous
magnetic field normal to the plane B = (0, 0, B(y))
(linear along y: B(y) = B0 + B1y), and a general
electric field E(x). If E is stationary it is possible
to redefine the Wigner potential Vw(p,x) in terms
of DF . The thus obtained equation(
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resembles the common Wigner equation, except
the additional terms originating from HF . On the
left is the force-less Liouville operator (Lo), now
completed by the magnetic Lorentz force F =
e
mp×B(y). The third row involves higher order
mixed derivatives and vanishes with B1 → 0. The
force-less Lo of the standard theory in conjunction
with the Wigner potential gives rise to interference,

nonlocality, tunneling, negativity, and oscillatory
behavior of fw: Despite that Lo involves ’classical’
Newtonian trajectories the evolution is fully coher-
ent. In contrast, in equation (1) (i) the trajectories
are driven by the inhomogeneous magnetic field
B(y), which modifies the interplay with Vw, and
(ii) a B1-dependent term exists, which interacts with
both, Lo(B(y)) and Vw. We focus our simulation
analysis on (i): A choice of a small B1 allows to
neglect the last term in (1) and considers the inter-
play between Lo(B(y)) and Vw in the process of
magnetotunneling. A minimum uncertainty Wigner
state is injected at the bottom towards a 0.3eV and
1nm barrier at y = 30nm. We consider four cases
of (B0, B1): (0, 0), (−6T, 0), (−6T, 0.2T/nm),
and (−2T,−0.2T/nm) (Fig. 1-4). The electron can
tunnel into the upper half of the domain. The mean
densities follow the classical paths (indicated lines)
in accordance with the Ehrenfest theorem. In Fig. 1
the density shows a fine oscillatory structure above
the barrier. The latter is destroyed by the constant
magnetic field as shown in Fig. 2, which bends
the mean path to a particular position. In Fig. 3,
the magnetic field changes it’s direction after the
barrier, giving rise to a ’snake’ type of evolution.
Besides, the fine structure of the density above y =
30nm is recovered. Observing that the magnetic
field is zero around the barrier as in Fig. 1, we
associate this effect with the existence of a local
interplay with the EM fields. Indeed, in Fig. 4, when
B(y) around the barrier is particularly large (similar
to case 2), the oscillations are again suppressed. The
comparison of the four cases, Fig. 5, confirms this
conclusion. Despite that in Fig. 4 the electron is
guided to the same position as in Fig. 2, the effect on
fw is very different. This is shown by the negativity
(Fig. 6), which increases with the magnitude of the
magnetic field already far before the barrier. This
suggests another, nonlocal effect of the interplay of
the EM fields.
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Fig. 1. Case 1: The steady-state electron density n(x, y),
obtained after p integration of fw , is symmetric and shows a fine
oscillatory structure above the barrier. A Wigner state (electron)
with a kinetic energy 0.1eV and σx,y = 3nm is injected at the
bottom, evolving towards +y-direction. Dashed line indicates the
mean path of the state’s evolution. No magnetic field is applied
(see B(y) indicators on the left). Green lines indicate the barrier.
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Fig. 4. Case 4: The magnetic field is gradually increased towards
+y-direction and is particularly large at and above the barrier. The
magnetic field suppresses the oscillations of the density, similar to
case 2 (Fig. 2). This is confirmed in Fig. 5. The mean path (white
dashed line) is compared to the mean path of case 2 (orange dot-
dashed line): Although they differ, they both guide the state to the
same final position.
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Fig. 2. Case 2: A constant magnetic field bends the density and
thus the mean path.

Fig. 5. Density distribution along y-direction, obtained after x-
integration of n(x, y): Cases 1&3 and 2&4 clearly group together,
suggesting that the oscillations are suppressed in the presence of a
magnetic field in the region of the barrier, further indicating that
the EM fields interact locally.
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Fig. 3. Case 3: The magnetic field becomes zero at the barrier
and switches the sign, giving rise to a snake type of evolution.
The density in the upper half of the domain shows again a fine
oscillatory structure.

Fig. 6. Negativity obtained after integration of the quantity
fwθ(−fw) (θ Heaviside function) on p and x: The negativity of
fw indicates quantum behavior. The appearance of negative values
after the injection of the entirely positive initial state below the
barrier (y < 25nm) demonstrates the nonlocal action of the barrier
already without magnetic field. The negativity increases with the
increase of B(y) in this region, which suggests again a nonlocal
interplay of the EM fields.
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